Final Exam Philosophy 470

Keanu Vestil

2018-03-14

Problem 1. Recall the language of arithmetic L_{Ar} with symbols:

- Constant Symbols: <u>0</u>
- Predicate Symbols: only equality \doteq
- Function Symbols: S

Furthermore, recall the intended L_{Ar} -structure of arithmetic \mathcal{N} :

- $|\mathcal{N}| = \mathbb{N}$ $\underline{0}^{\mathcal{N}} = 0$
- $\underline{S}^{\mathcal{N}}(n) = n+1$ for all $n \in |\mathcal{N}|$
- (a) Show that \mathcal{N} model the sentences

$$\psi_1 := \forall x (\neg \underline{S} x \doteq \underline{0}) \tag{PA1}$$

$$\psi_2 := \forall x \forall y (\underline{S}x \doteq \underline{S}y \to x \doteq y) \tag{PA2}$$

$$\psi_3 := \forall y (\neg y \doteq \underline{0} \to \exists x (y \doteq \underline{S} x)) \tag{PA3}$$

and for any $\varphi \in F_{L_{A_r}}$ with $FV(\varphi) = \{x\}$

$$(\varphi_{\underline{0}}^x \land \forall x (\varphi \to \varphi_{\underline{S}x}^x)) \to \forall x \varphi$$
(PA4)

Proof. Let us consider ψ_1 . $\mathcal{N} \vDash \psi_1$ if and only if $\mathcal{N} \vDash \forall x(\neg \underline{S}x \doteq \underline{0})[\sigma]$, where σ is an arbitrary \mathcal{N} -assignment. This is true if and only if for any $a \in |\mathcal{N}|, \mathcal{N} \models (\neg \underline{S}x \doteq \underline{0})[\sigma(x|a)]$. This is true if and only if $\langle \overline{\sigma(x|a)}(\underline{S}x), \overline{\sigma(x|a)}(\underline{0}) \rangle \notin = \mathcal{N}$. This is the same as saying $\langle \underline{S}^{\mathcal{N}}(a), 0 \rangle \notin$ $\doteq^{\mathcal{N}}$. Which means $\langle (a+1), 0 \rangle \not\in \doteq^{\mathcal{N}}$. We interpret this in our metalanguage to mean that for any $a \in |\mathcal{N}|$ $(a \in \mathbb{N})$, $a+1 \neq 0$. We know this to be true, because the only value of a for which a+1=0 is a=-1. But $-1 \notin \mathbb{N}$, so $-1 \notin |\mathcal{N}|$. Thus it is true that for any $a \in |\mathcal{N}|$ $(a \in \mathbb{N})$, $a+1 \neq 0$. By our line of reasoning, this implies that $\mathcal{N} \models \psi_1$.

Consider ψ_2 . $\mathcal{N} \vDash \psi_2$ if and only if $\mathcal{N} \vDash \forall x \forall y (\underline{S}x \doteq \underline{S}y \to x \doteq y[\sigma])$, where σ is an arbitrary \mathcal{N} -assignment. This is true if and only if for all $a \in |\mathcal{N}|$, for all $b \in |\mathcal{N}|$, $\mathcal{N} \vDash (\underline{S}x \doteq \underline{S}y \to x \doteq y)[\sigma(x|a)(y|b)]$. This is true if and only if $\mathcal{N} \nvDash \underline{S}x \doteq \underline{S}y[\sigma(x|a)(y|b)]$ or $\mathcal{N} \vDash x \doteq y[\sigma(x|a)(y|b)]$. We are done if $\mathcal{N} \nvDash \underline{S}x \doteq \underline{S}y[\sigma(x|a)(y|b)]$, so let us assume that $\mathcal{N} \vDash \underline{S}x \doteq \underline{S}y[\sigma(x|a)(y|b)]$.

This assumption tells us that $\langle \overline{\sigma(x|a)(y|b)}(\underline{S}x), \overline{\sigma(x|a)(y|b)}(\underline{S}y) \rangle \in \stackrel{:}{=}^{\mathcal{N}}$. Which means $\langle (a+1), (b+1) \rangle \in \stackrel{:}{=}^{\mathcal{N}}$. In our metalanguage, our assumption tells us that for any $a \in |\mathcal{N}|$, for any $b \in |\mathcal{N}|$ $(a, b \in \mathbb{N})$, a+1=b+1. We know, in our metalanguage, that simple algebra tells us that this is equivalent to a=b.

We wish to show that $\mathcal{N} \vDash x \doteq y[\sigma(x|a)(y|b)]$. This is true if and only if $\langle \overline{\sigma(x|a)(y|b)}(x), \overline{\sigma(x|a)(y|b)})(y) \rangle \in \doteq^{\mathcal{N}}$. That is, $\langle a, b \rangle \in \doteq^{\mathcal{N}}$. In our metalanguage, this means, for any $a \in |\mathcal{N}|$, for any $b \in |\mathcal{N}|$ $(a, b \in \mathbb{N})$, a = b. This is precisely what we have from our previous assumption. Thus, it is true that $\mathcal{N} \vDash x \doteq y[\sigma(x|a)(y|b)]$. By our line of reasoning, this implies that $\mathcal{N} \vDash \psi_2$.

Consider ψ_3 . $\mathcal{N} \models \psi_3$ if and only if $\mathcal{N} \models \forall y (\neg y \doteq \underline{0} \rightarrow \exists x (y \doteq \underline{S}x))[\sigma]$ where σ is an arbitrary \mathcal{N} -assignment. This is true if and only if for any $b \in |\mathcal{N}|, \ \mathcal{N} \models (\neg y \doteq \underline{0} \rightarrow \exists x (y \doteq \underline{S}x))[\sigma(y|b)]$. This is true if and only if $\mathcal{N} \nvDash \neg y \doteq \underline{0}[\sigma(y|b)]$ or $\mathcal{N} \models \exists x (y \doteq \underline{S}x)[\sigma(y|b)]$. We are done if $\mathcal{N} \nvDash \neg y \doteq \underline{0}[\sigma(y|b)]$, so let us assume that $\mathcal{N} \vDash \neg y \doteq \underline{0}[\sigma(y|b)]$.

This assumption tells us that $\langle \overline{\sigma(y|b)}(y), \overline{\sigma(y|b)}(\underline{0}) \rangle \notin \doteq^{\mathcal{N}}$. That is, $\langle b, 0 \rangle \notin \doteq^{\mathcal{N}}$. In our metalanguage, our assumption tells us that for any $b \in |\mathcal{N}|$ $(b \in \mathbb{N}), b \neq 0$.

We wish to show that $\mathcal{N} \models \exists x(y \doteq \underline{S}x)[\sigma(y|b)]$. This is true if and only if there is some $a \in |\mathcal{N}|$ such that $\mathcal{N} \models y \doteq \underline{S}x[\sigma(y|b)(x|a)]$. This is true if and only if $\langle \overline{\sigma(y|b)(x|a)}(y), \overline{\sigma(y|b)(x|a)}(\underline{S}x) \rangle \in \doteq^{\mathcal{N}}$. This means $\langle b, a + 1 \rangle \in \doteq^{\mathcal{N}}$. In our metalanguage, this means that for any $b \in |\mathcal{N}|$, there is some $a \in |\mathcal{N}|$ such that b = a + 1. Naturally, we would take such an a to be b - 1. However, in the case that b = 0, b - 1 = -1, and this would mean that $a \notin |\mathcal{N}|$. Recall, though, that our previous assumption prevents b = 0, so we have eliminated the only case in which this is not true. Thus it is true that $\mathcal{N} \models \exists x(y \doteq \underline{S}x)[\sigma(y|b)]$. By our line of reasoning, this implies that $\mathcal{N} \models \psi_3$.

For any $\varphi \in F_{L_{Ar}}$ with $FV(\varphi) = \{x\}$, consider $(\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x)) \rightarrow \forall x \varphi$. $\mathcal{N} \models (\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x)) \rightarrow \forall x \varphi$ if and only if $\mathcal{N} \models (\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x)) \rightarrow \forall x \varphi[\sigma]$, where σ is an arbitrary \mathcal{N} -assignment. This is true if and only if $\mathcal{N} \not\models (\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x))[\sigma]$ or $\mathcal{N} \models \forall x \varphi[\sigma]$. We are done if $\mathcal{N} \not\models (\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x))[\sigma]$, so let us assume that $\mathcal{N} \models (\varphi_{\underline{0}}^x \wedge \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x))[\sigma]$.

This assumption tells us that $\mathcal{N} \models \varphi_0^x[\sigma]$ and $\mathcal{N} \models \forall x(\varphi \to \varphi_{\underline{S}x}^x)[\sigma]$. The latter means that for any $a \in |\mathcal{N}|, \ \mathcal{N} \models \varphi \to \varphi_{\underline{S}x}^x[\sigma(x|a)]$. Furthermore, this is true if and only if $\mathcal{N} \not\models \varphi[\sigma(x|a)]$ or $\mathcal{N} \models \varphi_{\underline{S}x}^x[\sigma(x|a)]$. By the Substitution Lemma, $\mathcal{N} \models \varphi_0^x[\sigma]$ means that $\mathcal{N} \models \varphi[\sigma(x|0)]$. So it cannot be the case that for any $a \in |\mathcal{N}|, \ \mathcal{N} \not\models \varphi[\sigma(x|a)]$ because $\mathcal{N} \models \varphi[\sigma(x|0)]$ and $0 \in |\mathcal{N}|$. Thus it must be that $\mathcal{N} \models \varphi_{\underline{S}x}^x[\sigma(x|a)]$. By the Substitution Lemma, this means that $\mathcal{N} \models \varphi[\sigma(x|a)(\underline{S}x))]$. This means $\mathcal{N} \models \varphi[\sigma(x|\underline{S}^{\mathcal{N}}(a))]$. So we have that for any $a \in |\mathcal{N}|$ $(a \in \mathbb{N}), \ \mathcal{N} \models \varphi[\sigma(x|(a+1)))]$. In our metalanguage, let us refer to a+1as d. Notice that this means that for any $d \in \mathbb{N} \setminus \{0\}$ (because "a+1" prevents d = 0), $\ \mathcal{N} \models \varphi[\sigma(x|d)]$. However, recall that we also have from our assumption that $\ \mathcal{N} \models \varphi[\sigma(x|0)]$. So, in fact, for any $d \in \mathbb{N},$ $\ \mathcal{N} \models \varphi[\sigma(x|d)]$. Thus our assumption tells us that for any $d \in |\mathcal{N}|,$ $\ \mathcal{N} \models \varphi[\sigma(x|d)]$.

We wish to show that $\mathcal{N} \vDash \forall x \varphi[\sigma]$. This is true if and only if for any $d \in |\mathcal{N}|, \mathcal{N} \vDash \varphi[\sigma(x|d)]$. Notice that this is precisely what we have from our previous assumption. Thus $\mathcal{N} \vDash \forall x \varphi[\sigma]$. By our line of reasoning, $\mathcal{N} \vDash (\varphi_0^x \land \forall x(\varphi \to \varphi_{Sx}^x)) \to \forall x \varphi$.

Therefore \mathcal{N} models (PA1), (PA2), (PA3), and (PA4).

(b) Let PA be the set of all L_{Ar} -sentences of the form (PA1)-(PA4). Show that for any $n \in \mathbb{N}$

$$PA \vdash \forall x (\neg(\underbrace{\underline{SS}...\underline{S}}_{n+1 \text{ times}} x) \doteq x)$$

where the term

$$\underbrace{\underline{SS}...\underline{S}}_{n+1 \text{ times}} x$$

is the variable x preceded by n+1 occurrences of the symbol <u>S</u>.

Proof. We know that $PA \vdash \forall x(\neg \underline{S}x \doteq \underline{0})$, because this is of the form (PA1). We also know that $PA \vdash \forall x(\neg \underline{S}x \doteq \underline{0}) \rightarrow (\neg \underline{S}x \doteq \underline{0})_{Sx}^x$, since this is of the form (Ax2). By modus ponens, $PA \vdash (\neg \underline{S}x \doteq \underline{0})_{Sx}^{x}$. Which means that $PA \vdash \neg \underline{SS}x \doteq \underline{0}$. Since the variable x does not appear free in (PA1)-(PA4), we can use the Generalization Theorem to say that $PA \vdash \forall x(\neg \underline{SS}x \doteq \underline{0}).$

We can repeat these steps with the new theorem $\forall x(\neg SSx \doteq 0)$, in an inductive argument on the amount of \underline{S} symbols. We come to the conclusion that for any $n \in \mathbb{N}$, $PA \vdash \forall x(\neg(\underbrace{SS...S}_{n+1 \text{ times}} x) \doteq \underline{0}).$

This means, in particular, that $PA \vdash (\neg(\underbrace{SS}...\underline{S} \underline{0}) \doteq \underline{0})$. Let us consider $\varphi = (\neg(\underbrace{SS...S}_{n+1 \text{ times}} x) \doteq x).$ This means that $PA \vdash \varphi_{\underline{0}}^x$. We would like to show that $PA \vdash \varphi \to \varphi_{\underline{S}x}^x$.

Consider $PA \models \varphi \rightarrow \varphi_{Sx}^{x}$. This is true if and only if $PA \models \varphi \rightarrow \varphi_{Sx}^{x}[\sigma]$, where σ is an arbitrary \mathcal{N} -assignment. This is true if and only if $PA \not\models \varphi[\sigma]$ or $PA \models \varphi_{Sx}^x[\sigma]$. We are done if $PA \not\models \varphi[\sigma]$, so let us assume that $PA \models \varphi[\sigma]$.

Our assumption means that $\langle \underline{\underline{S}}^{\mathcal{N}}\underline{\underline{S}}^{\mathcal{N}}...\underline{\underline{S}}^{\mathcal{N}}}_{n+1 \text{ times}} \overline{\sigma}(x), \overline{\sigma}(x) \rangle \notin \doteq^{\mathcal{N}}$. In our metalanguage, our assumption tells us that $x + (n+1) \neq x$.

We wish to show that $PA \models \varphi_{Sx}^x[\sigma]$. By the Substitution Lemma, this is true if and only if $PA \models \varphi[\sigma(x|\overline{\sigma}(\underline{S}x))]$. This means $PA \models \varphi[\sigma(x|x+1)]$. This means that $\langle \underline{S}^{\mathcal{N}}\underline{S}^{\mathcal{N}}...\underline{S}^{\mathcal{N}}_{n+1 \text{ times}} \overline{\sigma}(x+1), \overline{\sigma}(x+1) \rangle \notin \doteq^{\mathcal{N}}$.

In our metalanguage this means that $(x+1)+(n+1) \neq (x+1)$. Suppose, for the sake of contradiction that, in fact, (x+1)+(n+1) = (x+1). Simple algebra tells us that this is equivalent to x + (n+1) = x. However, recall that our assumption tells us that $x + (n+1) \neq x$. So our most recent supposition that (x+1) + (n+1) = (x+1) leads to a contradiction and must be false. Thus it is true that $(x+1)+(n+1) \neq (x+1)$.

So it is true that $\langle \underline{S}^{\mathcal{N}} \underline{S}^{\mathcal{N}} \dots \underline{S}^{\mathcal{N}} \overline{\sigma}(x+1), \overline{\sigma}(x+1) \rangle \notin \doteq^{\mathcal{N}}$, and hence

 $PA \models \varphi_{\underline{S}x}^x[\sigma]$. This means that $PA \models \varphi \rightarrow \varphi_{\underline{S}x}^x[\sigma]$. Since σ was arbitrary, this means that $PA \models \varphi \rightarrow \varphi_{\underline{S}x}^x$. By Completeness, it follows that $PA \vdash \varphi \rightarrow \varphi_{\underline{S}x}^x$.

Since x does not appear free in PA (because it does not appear free in (PA1)-(PA4)), we can use the Generalization Theorem to see that $PA \vdash \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x)$. Recall that we have $PA \vdash \varphi_{\underline{0}}^x$. Thus we have $PA \vdash (\varphi_{\underline{0}}^x \land \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x))$. Recall that $PA \vdash (PA4)$. That is, for any $\varphi \in F_{L_{Ar}}$ with $FV(\varphi) = \{x\}, PA \vdash (\varphi_{\underline{0}}^x \land \forall x(\varphi \rightarrow \varphi_{\underline{S}x}^x)) \rightarrow \forall x\varphi$. Our specific φ only has x as a free variable, so this holds for our formula. Thus by modus ponens on our two most recent results, $PA \vdash \forall x\varphi$. Therefore,

$$PA \vdash \forall x (\neg (\underbrace{\underline{SS}...\underline{S}}_{n+1 \text{ times}} x) \doteq x)$$

(c) Show that (PA1)-(PA3) are independent:

i. $\{\psi_1\} \not\vdash \psi_2$ and $\{\psi_1\} \not\vdash \neg \psi_2$

Proof. Suppose for the sake of contradiction that in fact $\{\psi_1\} \vdash \psi_2$. By the Deduction Theorem, it follow that $\vdash \psi_1 \to \psi_2$. By Soundness, this means that $\psi_1 \to \psi_2$ is valid. In order to find a contradiction, we would like to present an *L*-structure which satisfies the antecedent, but not the consequent. Consider \mathfrak{A} with the properties $|\mathfrak{A}| = \mathbb{N}, \ \mathfrak{Q}^{\mathfrak{A}} = 0$, and

$$\underline{S}^{\mathfrak{A}}(n) = \begin{cases} 1, & \text{n odd} \\ 2, & \text{n even} \end{cases}$$

This *L*-structure leads to a contradiction because it satisfies ψ_1 but does not satisfy ψ_2 . So $\psi_1 \rightarrow \psi_2$ is not a valid. This is a contradiction, so it must instead be the case that $\{\psi_1\} \not\vdash \psi_2$.

Suppose for the sake of contradiction, that $\{\psi_1\} \vdash \neg \psi_2$. By the same reasoning, this supposition leads to the implication that $\psi_1 \to \neg \psi_2$ is valid. In order to find a contradiction, we would like to present an *L*-structure which satisfies the antecedent, but does not the satisfy consequent. In this case, that is actually equivalent to satisfying both ψ_1 and ψ_2 . In fact, we already have such an *L*structure. As shown in (a), \mathcal{N} satisfies both ψ_1 and ψ_2 . So it must be that $\psi_1 \to \neg \psi_2$ is not valid. This is a contradiction, so it must instead bybe the case that $\{\psi_1\} \not\vdash \neg \psi_2$. Therefore $\{\psi_1\} \not\vdash \psi_2$ and $\{\psi_1\} \not\vdash \neg \psi_2$.

ii. $\{\psi_1\} \not\vdash \psi_3$ and $\{\psi_1\} \not\vdash \neg \psi_3$

Proof. Using the same technique, we would like to show that the implication that $\psi_1 \to \psi_3$ is valid, leads to a contradiction. Consider the *L*-structure \mathfrak{A} with the properties $\mathfrak{A} = \mathbb{N} \setminus \{0\}, \underline{0}^{\mathfrak{A}} = \underline{0}^{\mathcal{N}}$, and $\underline{S}^{\mathfrak{A}}(n) = \underline{S}^{\mathcal{N}}(n)$. This leads to a contradiction because \mathfrak{A} satisfies ψ_1 but it does not satisfy ψ_3 , and hence $\psi_1 \to \psi_3$ is not valid. So it must instead be the case that $\{\psi_1\} \not\vDash \psi_3$.

Suppose for the sake of contradiction, that $\{\psi_1\} \vdash \neg \psi_3$. By the same reasoning, this supposition leads to the implication that $\psi_1 \to \neg \psi_3$ is valid. In order to find a contradiction, we would like to present an *L*-structure which satisfies the antecedent, but does not satisfy the consequent. In this case, that is actually equivalent to satisfying both ψ_1 and ψ_3 . In fact, we already have such an *L*structure. As shown in (a), \mathcal{N} satisfies both ψ_1 and ψ_3 . So it must be that $\psi_1 \to \neg \psi_3$ is not valid. This is a contradiction, so it must instead be the case that $\{\psi_1\} \not\vdash \neg \psi_3$.

Therefore $\{\psi_1\} \not\vdash \psi_3$ and $\{\psi_1\} \not\vdash \neg \psi_3$.

iii. $\{\psi_2\} \not\vdash \psi_1$ and $\{\psi_2\} \not\vdash \neg \psi_1$

Proof. Using the same technique, we would like to show that the implication that $\psi_2 \to \psi_1$ is valid leads to a contradiction. Consider the *L*-structure \mathfrak{A} with the properties $|\mathfrak{A}| = \{0\}, \underline{0}^{\mathfrak{A}} = 0$, and $\underline{S}^{\mathfrak{A}}(n) = n$. \mathfrak{A} satisfies ψ_2 but it does not satisfy ψ_1 . This means

that $\psi_2 \to \psi_1$ is not valid, but that is a contradiction. So it must instead be the case that $\{\psi_2\} \not\vdash \psi_1$.

Suppose, for the sake of contradiction that $\{\psi_2\} \vdash \neg \psi_1$. By Contraposition, this is true if and only if $\{\psi_1\} \vdash \neg \psi_2$. However, we showed in i that in fact $\{\psi_1\} \nvDash \neg \psi_2$. So it must instead be the case that $\{\psi_2\} \nvDash \neg \psi_1$.

Therefore
$$\{\psi_2\} \not\vdash \psi_1$$
 and $\{\psi_2\} \not\vdash \neg \psi_1$.

iv. $\{\psi_2\} \not\vdash \psi_3$ and $\{\psi_2\} \not\vdash \neg \psi_3$

Proof. Using the same technique, we would like to show that the implication that $\psi_2 \to \psi_3$ is valid leads to a contradiction. Consider the *L*-structure \mathfrak{A} with the properties $|\mathfrak{A}| = \mathbb{N} \setminus \{0\}, \underline{0}^{\mathfrak{A}} = \underline{0}^{\mathcal{N}}$, and $\underline{S}^{\mathfrak{A}}(n) = \underline{S}^{\mathcal{N}}(n)$. \mathfrak{A} satisfies ψ_2 , but it does not satisfy ψ_3 , so this means that $\psi_2 \to \psi_3$ is not valid. This is a contradiction, so it must instead be the case that $\{\psi_2\} \neq \psi_3$.

Suppose for the sake of contradiction, that $\{\psi_2\} \vdash \neg \psi_3$. By the same reasoning, this supposition leads to the implication that $\psi_2 \rightarrow \neg \psi_3$ is valid. In order to find a contradiction, we would like to present an *L*-structure which satisfies the antecedent, but does not the satisfy consequent. In this case, that is actually equivalent to satisfying both ψ_2 and ψ_3 . In fact, we already have such an *L*structure. As shown in (a), \mathcal{N} satisfies both ψ_2 and ψ_3 . So it must be that $\psi_2 \rightarrow \neg \psi_3$ is not valid. This is a contradiction, so it must instead be the case that $\{\psi_2\} \not\vdash \neg \psi_3$.

Therefore $\{\psi_2\} \not\vdash \psi_3$ and $\{\psi_2\} \not\vdash \neg \psi_3$.

v. $\{\psi_3\} \not\vdash \psi_1$ and $\{\psi_3\} \not\vdash \neg \psi_1$

Proof. Using the same technique, we would like to show that the implication that $\psi_3 \to \psi_1$ is valid leads to a contradiction. Consider the *L*-structure \mathfrak{A} with the properties $|\mathfrak{A}| = \{0\}, \ \underline{0}^{\mathfrak{A}} = 0$, and $\underline{S}^{\mathfrak{A}}(n) = n$. \mathfrak{A} satisfies ψ_3 , but it does not satisfy ψ_1 . This means that $\psi_3 \to \psi_1$ is not valid, but that is a contradiction. So it must instead be the case that $\{\psi_3\} \not\models \psi_1$.

Suppose, for the sake of contradiction that $\{\psi_3\} \vdash \neg \psi_1$. By Contraposition, this is true if and only if $\{\psi_1\} \vdash \neg \psi_3$. However, we showed in ii that in fact $\{\psi_1\} \nvDash \neg \psi_3$. So it must instead be the case that $\{\psi_3\} \nvDash \neg \psi_1$. Therefore $\{\psi_3\} \nvDash \psi_1$ and $\{\psi_3\} \nvDash \neg \psi_1$. vi. $\{\psi_3\} \not\vdash \psi_2$ and $\{\psi_3\} \not\vdash \neg \psi_2$

Proof. Using the same technique, we would like to show that the implication that $\psi_3 \to \psi_2$ is valid leads to a contradiction. Consider the *L*-structure \mathfrak{A} with the properties $|\mathfrak{A}| = \{0, 1, 2\}, \underline{0}^{\mathfrak{A}} = 0$, and

$$\underline{S}^{\mathfrak{A}}(n) = \begin{cases} 1, & \text{n odd} \\ 2, & \text{n even} \end{cases}$$

 \mathfrak{A} satisfies ψ_3 but it does not satisfy ψ_2 . So it follows that $\psi_3 \to \psi_2$ is not valid. This is a contradiction. So it must instead be the case that $\{\psi_3\} \not\vdash \psi_2$.

Suppose, for the sake of contradiction that $\{\psi_3\} \vdash \neg \psi_2$. By Contraposition, this is true if and only if $\{\psi_2\} \vdash \neg \psi_3$. However, we showed in iv that in fact $\{\psi_2\} \nvDash \neg \psi_3$. So it must instead be the case that $\{\psi_3\} \nvDash \neg \psi_2$.

Therefore $\{\psi_3\} \not\vdash \psi_2$ and $\{\psi_3\} \not\vdash \neg \psi_2$.

Problem 2. A collection \mathcal{A} of *L*-structure is said to be *finitely axiomatizable* if there is a finite set of *L*-formulas $\Gamma \subseteq F_L$ such that \mathfrak{A} satisfies Γ iff $\mathfrak{A} \in \mathcal{A}$. In this case, we say that Γ axiomatizes \mathcal{A} .

Consider a language L with no constant or function symbols and whose only predicate symbol is the two-place predicate $\dot{<}$. (Assume L contains the equality predicate \doteq).

(a) Recall that a relation is called a *linear ordering* just in case it is reflexive, anti-symmetric, transitive, and connected. Show that the collection of *L*-structure \mathfrak{A} such that $\dot{<}^{\mathfrak{A}}$ is a linear ordering is finitely axiomatizable.

Proof. Let \mathcal{A} be the collection of L-structures \mathfrak{A} such that $\dot{<}^{\mathfrak{A}}$ is a linear ordering. Let $\Gamma = \{\psi_1, \psi_2, \psi_3, \psi_4\}$, where

$$\begin{split} \psi_1 &:= \forall x (x \dot{<} x) \\ \psi_2 &:= \forall x \forall y (x \dot{<} y \land y \dot{<} x \to x \dot{=} y) \\ \psi_3 &:= \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \to x \dot{<} z) \\ \psi_4 &:= \forall x \forall y (\neg x \dot{=} y \to (x \dot{<} y \lor y \dot{<} x)) \end{split}$$

Suppose that some *L*-structure \mathfrak{A} satisfies Γ . That is to say \mathfrak{A} satisfies ψ_1, ψ_2, ψ_3 , and ψ_4 . In our metalanguage, we can see that:

- A satisfies ψ₁ if and only if <^A is reflexive
 A satisfies ψ₂ if and only if <^A is anti-symmetric
- \mathfrak{A} satisfies ψ_3 if and only if $<^{\mathfrak{A}}$ is *transitive*
- \mathfrak{A} satisfies ψ_4 if and only if $\dot{<}^{\mathfrak{A}}$ is *connected*

This means that \mathfrak{A} satisfies Γ if and only if $\dot{<}^{\mathfrak{A}}$ is reflexive, antisymmetric, transitive, and connected. This is precisely the definition of $\stackrel{\mathfrak{A}}{\leq}^{\mathfrak{A}}$ being a linear ordering. We have shown that if some \mathfrak{A} satisfies Γ , then it must be the case that $\dot{<}^{\mathfrak{A}}$ is a linear ordering. Thus $\mathfrak{A} \in \mathcal{A}$.

Suppose that $\mathfrak{A} \in \mathcal{A}$. Then we have $\dot{<}^{\mathfrak{A}}$ is a linear ordering. This means that $\dot{<}^{\mathfrak{A}}$ is reflexive, anti-symmetric, transitive, and connected. From earlier, we see that \mathfrak{A} satisfies ψ_1 because $\dot{<}^{\mathfrak{A}}$ is *reflexive*, \mathfrak{A} satisfies ψ_2 because $\dot{<}^{\mathfrak{A}}$ is anti-symmetric, \mathfrak{A} satisfies ψ_3 because $\dot{<}^{\mathfrak{A}}$ is transitive, and \mathfrak{A} satisfies ψ_4 because $\dot{<}^{\mathfrak{A}}$ is *connected*. This means that \mathfrak{A} satisfies Γ . We have shown that if $\mathfrak{A} \in \mathfrak{A}$, then \mathfrak{A} satisfies Γ .

 \mathfrak{A} satisfies Γ if and only if $\mathfrak{A} \in \mathfrak{A}$. Since Γ is a finite set (with 4) elements), our definition of "finitely axiomatizable" is satsified. Therefore, the collection of L-structures \mathfrak{A} such that $\dot{<}^{\mathfrak{A}}$ is a linear ordering (which we referred as \mathcal{A}) is finitely axiomatizable.

(b) A two-place relation R on a set A is called a *well-ordering* if it is a linear ordering and every non-empty subset of A has an R-least element, i.e., for every $B \subseteq A$, if $B \neq \emptyset$, then there is an $a \in B$ such that for all $b \in B, \langle a, b \rangle \in R.$

Let \mathcal{A}_{wo} be the collection of *L*-structures such that $\dot{<}^{\mathfrak{A}}$ is a well-ordering. In the following, you will show that \mathcal{A}_{wo} is not finitely axiomatizable.

Suppose that $\Gamma \subseteq F_L$ is a finite set of L-formulas axiomatizing \mathfrak{A}_{wo} . Consider a language L' containing $\dot{<}$ and countably many new constant symbols c_0, c_1, c_2, \dots For each $j \in \mathbb{N}$ define and L'-formula

$$\varphi_j = (c_{j+1} \dot{<} c_j) \land (\neg c_{j+1} \dot{=} c_j)$$

i. Show that for any $j \in \mathbb{N}$, the set

 $\Gamma \cup \{\varphi_j\}$

is satisfiable.

Proof. Consider some arbitrary $\mathfrak{A} \in \mathcal{A}_{wo}$. Let \mathfrak{A}' be the same *L*structure with the modification that each constant of *L'* is assigned such that $c_j^{\mathfrak{A}'} > c_{j+1}^{\mathfrak{A}'}$ for every $j \in \mathbb{N}$. Since these constants do not appear in *L*, \mathfrak{A}' satisfies Γ (and hence each formula of Γ). By the way that we have assigned constants in \mathfrak{A}' , φ_j is also satisfied by \mathfrak{A}' for any $j \in \mathbb{N}$. So for any $j \in \mathbb{N}$, \mathfrak{A}' satisfies $\Gamma \cup {\varphi_j}$. Therefore, for any $j \in \mathbb{N}$, $\Gamma \cup {\varphi_j}$ is satisfiable.

ii. Show that for any $k \in \mathbb{N}$, the set

$$\Gamma \cup \{\varphi_j | j \le k\}$$

is satisfiable.

Proof. Consider \mathfrak{A}' from i.. As determined in i. we know that \mathfrak{A}' satisfies Γ and \mathfrak{A}' satisfies φ_j for any $j \in \mathbb{N}$. This means for any $k \in \mathbb{N}$, \mathfrak{A}' satisfies $\{\varphi_j | j \leq k\}$, because all the indices such that $j \leq k$ are in \mathbb{N} . It follows that \mathfrak{A}' satisfies $\Gamma \cup \{\varphi_j | j \leq k\}$. Therefore $\Gamma \cup \{\varphi_j | j \leq k\}$ is satisfiable. \Box

iii. Show that the set

$$\Gamma' := \Gamma \cup \{\varphi_j | j \in \mathbb{N}\}$$

is satisfiable.

Proof. In i. and ii., we showed that every finite subset of Γ' is satisfiable. Therefore, by the Compactness Theorem, Γ' is satisfiable. \Box

iv. Show that if \mathfrak{B} is an *L*'-structure satisfying Γ' then $\dot{<}^{\mathfrak{B}}$ is not a well-ordering.

Proof. Suppose, for the sake of contradiction that $\dot{<}^{\mathfrak{B}}$ is a wellordering. In particular, suppose that there is some $c_m^{\mathfrak{B}}$ of every nonempty subset of $|\mathfrak{B}|$ such that $c_m^{\mathfrak{B}}$ is the least $\dot{<}^{\mathfrak{B}}$ -least element of the subset. Since \mathfrak{B} satisfies Γ' , it must be also be the case that \mathfrak{B} satisfies φ_m . That is to say, $c_{m+1}^{\mathfrak{B}} \dot{<}^{\mathfrak{B}} c_m^{\mathfrak{B}}$ and $c_{m+1}^{\mathfrak{B}} \neq c_m^{\mathfrak{B}}$. This means $c_m^{\mathfrak{B}}$ is not actually the $\dot{<}^{\mathfrak{B}}$ -least element of the subset of $|\mathfrak{B}|$. This is a contradiction, so no such element can exist in this context. Therefore, if \mathfrak{B} is an *L*'-structure satisfying Γ' then $\dot{<}^{\mathfrak{B}}$ cannot be a well-ordering. \Box

v. Show there is an *L*-structure \mathfrak{A} satisfying Γ such that $\mathfrak{A} \notin \mathcal{A}_{wo}$. Conclude that \mathcal{A}_{wo} is not finitely axiomatizable.

Proof. From iii we know that Γ' is satisfiable. Let \mathfrak{A} be an L'stcuture which satisfies Γ' . By the way we defined L' in relation
to L, \mathfrak{A} is also an L-structure. Since $\Gamma \subseteq \Gamma'$, \mathfrak{A} satisfies Γ as
well. Recall that we supposed that Γ is a finite axiomatization
of \mathcal{A}_{wo} . Since \mathfrak{A} is an L-structure which satisfies Γ , it follows
that $\mathfrak{A} \in \mathcal{A}_{wo}$. However, we showed in iv that if \mathfrak{A} is an L'structure satisfying Γ' , then $\dot{<}^{\mathfrak{A}}$ is not a well-ordering. Since $\dot{<}^{\mathfrak{A}}$ is not a well-ordering, $\mathfrak{A} \notin \mathcal{A}_{wo}$. This is a contradiction, and
therefore our first supposition that exists such a finite set Γ which
axiomatizes \mathcal{A}_{wo} must be incorrect. Therefore, \mathcal{A}_{wo} is not finitely
axiomatizable.

(c) Show that the collection of *L*-structures \mathfrak{A} such that $|\mathfrak{A}|$ is uncountable is not finitely axiomatizable.

Proof. Let \mathcal{A} be the set of L-structures \mathfrak{A} such that $|\mathfrak{A}|$ is uncountable. Suppose there exists a set Γ which axiomatizes \mathcal{A} . By definition of axiomatization, this means that for any $\mathfrak{A} \in \mathcal{A}$, \mathfrak{A} satisfies Γ . Let $\hat{\mathfrak{A}}$ be an arbitrary L-structure in \mathcal{A} . We have that $\hat{\mathfrak{A}}$ satisfies Γ . By the Downhill Lowenheim-Skolem Theorem, since Γ is satisfiable, there exists some L-structure \mathfrak{B} which also satisfies Γ and whose domain is countable or finite. Since this \mathfrak{B} satisfies Γ , and since Γ axiomatizes \mathcal{A} , it follows that $\mathfrak{B} \in \mathcal{A}$. But, since \mathfrak{B} has a countable or finite domain, in cannot be the case that $\mathfrak{B} \in \mathcal{A}$. This is because \mathcal{A} is the set of L-structures whose domains are uncountable. So $\mathfrak{B} \notin \mathcal{A}$ because a domain cannot be both countable (or finite) and uncountable. We have arrive at the contradiction that \mathfrak{B} both is an is not an element of \mathcal{A} . Hence our assumption that there exists a set Γ which axiomatizes \mathcal{A} is false. So there is no set Γ which axiomatizes \mathcal{A} . In particular, there is no finite set Γ which axiomatizes \mathcal{A} . This means that \mathcal{A} is not finitely axiomatization. Therefore, the collection of *L*-structures \mathfrak{A} such that $|\mathfrak{A}|$ is uncountable is not finitely axiomatizable. \Box

Problem 3. Recall the language L_{ST} of set theory with symbols:

- Constant Symbols: none
- Predicate Symbols: the two-place predicate \leq (and equality \doteq)
- Function Symbols: none

Recall the axioms of pair and union:

$$\varphi_{pair} := \forall x \forall y \exists z \forall w (w \in z \equiv (w = x \lor w = y))$$

$$\varphi_{union} := \forall x \exists y \forall z (z \in y \equiv \exists w (w \in x \land z \in w))$$

(a) Consider the L_{ST} -structure \mathfrak{A} with $|\mathfrak{A}| = \mathbb{N}$ and

$$\underline{\in}^{\mathfrak{A}} = < := \{ \langle n, m \rangle \in \mathbb{N} \times \mathbb{N} | n < m \}$$

Show that $\mathfrak{A} \vDash \varphi_{union}$ but $\mathfrak{A} \nvDash \varphi_{pair}$.

Proof. Let us first consider $\mathfrak{A} \models \varphi_{union}$. This is true if and only if $\mathfrak{A} \models \forall x \exists y \forall z (z \in y \equiv \exists w (w \in x \land z \in w))[\sigma]$, where σ is an arbitrary \mathfrak{A} -assignment. This is true if and only if for any $a \in |\mathfrak{A}|$, there is some $b \in |\mathfrak{A}|$ such that for any $c \in |\mathfrak{A}|$,

$$\mathfrak{A} \vDash (z \underline{\in} y \equiv \exists w (w \underline{\in} x \land z \underline{\in} w)) [\sigma(x|a)(y|b)(z|c)].$$

This is true if and only if $\mathfrak{A} \models z \in y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{A} \models \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)]$, or $\mathfrak{A} \nvDash z \in y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{A} \nvDash \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)]$.

Let us check if $\mathfrak{A} \vDash z \subseteq y[\sigma(x|a)(y|b)(z|c)]$. This is true if and only if $\langle c, b \rangle \in \subseteq^{\mathfrak{A}}$. In our metalanguage, this means that there is some $b \in \mathbb{N}$ such that for any $c \in \mathbb{N}$, c < b. We know this to be false, as there is no greatest natural number (or greatest integer). For if there were such a natural number M, M + 1 would be greater than M. This is a contradiction since we assumed M to be greater than every natural number. Thus it follows that $\mathfrak{A} \nvDash z \subseteq y[\sigma(x|a)(y|b)(z|c)]$.

Let us check if $\mathfrak{A} \models \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)]$. This is true if and only if for any $a \in |\mathfrak{A}|$, there is some $b \in |\mathfrak{A}|$ such that for any $c \in |\mathfrak{A}|$, there exists some $d \in |\mathfrak{A}|$ such that $\mathfrak{A} \models (w \subseteq x \land z \subseteq w)[\sigma(x|a)(y|b)(z|c)(w|d)]$. This is true if and only if both $\mathfrak{A} \models (w \subseteq x)[\sigma(x|a)(y|b)(z|c)(w|d)]$ and $\mathfrak{A} \models (z \subseteq w)[\sigma(x|a)(y|b)(z|c)(w|d)]$. Let us check if $\mathfrak{A} \models (w \subseteq x)[\sigma(x|a)(y|b)(z|c)(w|d)]$. This is true if and only if $\langle d, a \rangle \in \subseteq^{\mathfrak{A}}$. In our metalanguage, this means that for any $a \in \mathbb{N}$, there exists some $d \in \mathbb{N}$ such that d < a. This cannot be the true, as we can see by considering the case a = 0. There is no such element $d \in \mathbb{N}$ such that d < 0. Thus, in cannot be the case that $\mathfrak{A} \models (w \subseteq x)[\sigma(x|a)(y|b)(z|c)(w|d)]$.

It follows that it cannot be the case that both

$$\mathfrak{A}\vDash (w\underline{\in} x)[\sigma(x|a)(y|b)(z|c)(w|d)] \text{ and } \mathfrak{A}\vDash (z\underline{\in} w)[\sigma(x|a)(y|b)(z|c)(w|d)].$$

Hence, $\mathfrak{A} \not\models \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)].$ We have shown that both $\mathfrak{A} \not\models z \in y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{A} \not\models \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)].$ Thus, $\mathfrak{A} \models \varphi_{union}.$

Let us now consider $\mathfrak{A} \models \varphi_{pair}$. This is true if and only if $\mathfrak{A} \models \forall x \forall y \exists z \forall w (w \in z \equiv (w \doteq x \lor w \doteq y))[\sigma]$, where σ is an arbitrary \mathfrak{A} -assignment. This is true if for any $a \in \mathbb{N}$, for any $b \in \mathbb{N}$, there is some $c \in \mathbb{N}$ such that for any $d \in \mathbb{N}$, $\mathfrak{A} \models (w \in z \equiv (w \doteq x \lor w \doteq y))[\sigma(x|a)(y|b)(z|c)(w|d)]$. In our metalanguage, this means that for any $a \in \mathbb{N}$, for any $b \in \mathbb{N}$, there is some $c \in \mathbb{N}$ such that for any $d \in \mathbb{N}$, d < c implies that d = d or d = b, and d = a or d = b implies d < c.

Consider the case that a = 9, b = 10. There is no such c which would restrict d to either be 9 or 10. Since we have have the assumption that d < c, c must be 11 or greater in order for the possibility of d = 9 or d = 10. However, if c > 11 and d < c, it is not necessarily the case that d = 9 or d = 10, because d could also be any natural from 1 to 8. Thus, by means of counterexample, we have shown that under these conditions, $\mathfrak{A} \not\models (w \in z \equiv (w \doteq x \lor w \doteq y))[\sigma(x|a)(y|b)(z|c)(w|d)]$. This means that $\mathfrak{A} \not\models \forall x \forall y \exists z \forall w (w \in z \equiv (w \doteq x \lor w \doteq y))[\sigma]$. Thus, $\mathfrak{A} \not\models \varphi_{pair}$. Therefore we have shown $\mathfrak{A} \models \varphi_{union}$ but $\mathfrak{A} \not\models \varphi_{pair}$.

(b) Define a sequence of sets recursively as follows:

$$V_0 := \emptyset$$
$$v_{n+1} := \mathcal{P}(V_n)$$

Define the set V_{ω} of hereditarily finite sets by

$$V_{\omega} = \bigcup_{n \in \mathbb{N}} V_n$$

Consider the L_{ST} -structure \mathfrak{B} with $|\mathfrak{B}| = V_{\omega}$ and

$$\underline{\in}^{\mathfrak{B}} = \in := \{ \langle x, y \rangle \in V_{\omega} \times V_{\omega} | x \in y \}$$

Show that $\mathfrak{B} \vDash \varphi_{union}$ and $\mathfrak{B} \vDash \varphi_{pair}$.

Proof. Let us first consider $\mathfrak{B} \vDash \varphi_{union}$. By a similar line of reasoning as part (a), this is true if and only if for and $a \in V_{\omega}$, there is a $b \in V_{\omega}$ such that for any $c \in V_{\omega}$, $\mathfrak{B} \vDash z \leq y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{B} \vDash \exists w(w \leq x \land z \leq w)[\sigma(x|a)(y|b)(z|c)]$, or $\mathfrak{B} \nvDash z \leq y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{B} \nvDash \exists w(w \leq x \land z \leq w)[\sigma(x|a)(y|b)(z|c)]$.

Let us check $\mathfrak{B} \models z \in y[\sigma(x|a)(y|b)(z|c)]$. This is true if and only if, as interpreted in our metalanguage, there is some $b \in V_{\omega}$ such that for any $c \in V_{\omega}$, $c \in b$. Suppose that this is true. Since $b \in V_{\omega}$, bis an element of some V_n . This means that $\{b\} \in V_{n+1}$, and hence $\{b\}$ is also an element of V_{ω} . However $\{b\} \notin b$, and this contradicts our supposition. Therefore no such element b can exists, and hence $\mathfrak{B} \notin z \in y[\sigma(x|a)(y|b)(z|c)]$.

Let us check $\mathfrak{B} \models \exists w(w \subseteq x \land z \subseteq w)[\sigma(x|a)(y|b)(z|c)]$. This is true if and only if for all $a \in V_{\omega}$, there is some $b \in V_{\omega}$ such that for any $c \in V_{\omega}$, there is some $d \in V_{\omega}$ such that $\mathfrak{B} \models (w \subseteq x \land z \subseteq w)[\sigma(x|a)(y|b)(z|c)(w|d)]$. In our metalanguage this is interpreted to mean for all $a \in V_{\omega}$, there is some $b \in V_{\omega}$ such that for any $c \in V_{\omega}$, there is some $d \in V_{\omega}$ such that $d \in a$ and $c \in d$. Consider the case that $a = \emptyset$. It cannot be the case that there is some $d \in V_{\omega}$ such that $d \in a$, because in the case a has no elements.

Thus it cannot be the case that $\mathfrak{B} \vDash \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)].$ So $\mathfrak{B} \not\vDash \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)].$ We have shown that $\mathfrak{B} \not\vDash z \in y[\sigma(x|a)(y|b)(z|c)]$ and $\mathfrak{B} \not\vDash \exists w(w \in x \land z \in w)[\sigma(x|a)(y|b)(z|c)],$ and thus $\mathfrak{B} \vDash \varphi_{union}.$

Let us consider $\mathfrak{B} \models \varphi_{pair}$. This is true if and only if for any $a \in V_{\omega}$, for any $b \in V_{\omega}$, there is some $c \in V_{\omega}$ such that for any $d \in V_{\omega}$, $\mathfrak{B} \models (w \in z \equiv (w = x \lor w = y))[\sigma(x|a)(y|b)(z|c)(w|d)]$, where σ is an arbitrary \mathfrak{B} -assignment. This is true if and only if $\mathfrak{B} \models$

 $(w \leq z) [\sigma(x|a)(y|b)(z|c)(w|d)] \text{ and } \mathfrak{B} \vDash (w \neq x \lor w \neq y) [\sigma(x|a)(y|b)(z|c)(w|d)],$ or $\mathfrak{B} \nvDash (w \leq z) [\sigma(x|a)(y|b)(z|c)(w|d)] \text{ and } \mathfrak{B} \nvDash (w \neq x \lor w \neq y) [\sigma(x|a)(y|b)(z|c)(w|d)].$

Let us check $\mathfrak{B} \vDash (w \leq z)[\sigma(x|a)(y|b)(z|c)(w|d)]$. This is true if and only if, as interpreted in our metalanguage, there exists some $c \in V_{\omega}$ such that for any $d \in V_{\omega}$, $d \in c$. We have previously shown this to be false, earlier in this proof, so $\mathfrak{B} \nvDash (w \leq z)[\sigma(x|a)(y|b)(z|c)(w|d)]$.

Let us check $\mathfrak{B} \models (w \doteq x \lor w \doteq y)[\sigma(x|a)(y|b)(z|c)(w|d)]$. This is true if and only if, $\mathfrak{B} \models (w \doteq x)[\sigma(x|a)(y|b)(z|c)(w|d)]$ or $\mathfrak{B} \models (w \doteq y)[\sigma(x|a)(y|b)(z|c)(w|d)]$. The first of these is true if and only if for any $a \in V_{\omega}$, for and $b \in V_{\omega}$, a = b. This is false, because $\emptyset \in V_{\omega}$ and $\{\emptyset\} \in V_{\omega}$, but $\emptyset \neq \{\emptyset\}$. The second of these is false, for the same exact reason. Thus, $\mathfrak{B} \not\models (w \doteq x \lor w \doteq y)[\sigma(x|a)(y|b)(z|c)(w|d)]$. We have shown that $\mathfrak{B} \not\models (w \in z)[\sigma(x|a)(y|b)(z|c)(w|d)]$ and $\mathfrak{B} \not\models (w \doteq x \lor w \doteq y)[\sigma(x|a)(y|b)(z|c)(w|d)]$. Thus, it follows that $\mathfrak{B} \models \varphi_{pair}$. Therefore, we have shown that $\mathfrak{B} \models \varphi_{union}$ and $\mathfrak{B} \models \varphi_{pair}$.

(c) Show that $\{\varphi_{union}\} \not\vdash \varphi_{pair}$ and $\{\varphi_{union}\} \not\vdash \neg \varphi_{pair}$.

Proof. Suppose, for the sake of contradiction that in fact $\{\varphi_{union}\} \vdash \varphi_{pair}$. By the Deduction Theorem, this would imply that $\vdash \varphi_{union} \rightarrow \varphi_{pair}$. By Soundness, this implies that $\models \varphi_{union} \rightarrow \varphi_{pair}$. This means that for any *L*-structure \mathfrak{A} and any \mathfrak{A} -assignment, $\mathfrak{A} \models \varphi_{union} \rightarrow \varphi_{pair}$. In order to find a contradiction, we would like to present an *L*-structure which satisfies φ_{union} but does not satisfy φ_{pair} . Notice that the *L*-structure, \mathfrak{A} from (a) does precisely that. Thus, we have arrived at a contradiction and it must be the case instead that $\{\varphi_{union}\} \not\vdash \varphi_{pair}$.

Suppose for the sake of contradiction that in fact $\{\varphi_{union}\} \vdash \neg \varphi_{pair}$. By the same reasoning as before, this leads us to the same implication that $\varphi_{union} \rightarrow \neg \varphi_{pair}$ is valid. In order to find a contradiction, we would like to present an *L*-structure which satisfies φ_{union} , but does not satisfy $\neg \varphi_{pair}$. Equivalently, such an *L*-structure would have to satisfy φ_{union} and φ_{pair} . Notice that the *L*-structure \mathfrak{B} from (b) does precisely that. Thus we have arrived at a contradiction and it must be the case instead that $\{\varphi_{union}\} \not\vdash \neg \varphi_{pair}$.

Therefore, we have shown that $\{\varphi_{union}\} \not\vdash \varphi_{pair}$ and $\{\varphi_{union}\} \not\vdash \neg \varphi_{pair}$.