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Problem 1. Recall the language of arithmetic LAr with symbols:

• Constant Symbols: 0
• Predicate Symbols: only equality =̇
• Function Symbols: S

Furthermore, recall the intended LAr-structure of arithmetic N :

• |N | = N
• 0N = 0
• SN (n) = n+ 1 for all n ∈ |N |

(a) Show that N model the sentences

ψ1 := ∀x(¬Sx=̇0) (PA1)

ψ2 := ∀x∀y(Sx=̇Sy → x=̇y) (PA2)

ψ3 := ∀y(¬y=̇0→ ∃x(y=̇Sx)) (PA3)

and for any ϕ ∈ FLAr
with FV (ϕ) = {x}

(ϕx
0 ∧ ∀x(ϕ→ ϕx

Sx))→ ∀xϕ (PA4)

Proof. Let us consider ψ1. N � ψ1 if and only if N � ∀x(¬Sx=̇0)[σ],
where σ is an arbitrary N -assignment. This is true if and only if
for any a ∈ |N |, N � (¬Sx=̇0)[σ(x|a)]. This is true if and only if
〈σ(x|a)(Sx), σ(x|a)(0)〉 6∈ =̇N . This is the same as saying 〈SN (a), 0〉 6∈
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=̇N . Which means 〈(a+1), 0〉 6∈ =̇N . We interpret this in our metalan-
guage to mean that for any a ∈ |N | (a ∈ N), a+ 1 6= 0. We know this
to be true, because the only value of a for which a + 1 = 0 is a = −1.
But −1 6∈ N, so −1 6∈ |N |. Thus it is true that for any a ∈ |N | (a ∈ N),
a+ 1 6= 0. By our line of reasoning, this implies that N � ψ1.

Consider ψ2. N � ψ2 if and only if N � ∀x∀y(Sx=̇Sy → x=̇y[σ]),
where σ is an arbitrary N -assignment. This is true if and only if for
all a ∈ |N |, for all b ∈ |N |, N � (Sx=̇Sy → x=̇y)[σ(x|a)(y|b)]. This is
true if and only if N 6� Sx=̇Sy[σ(x|a)(y|b)] or N � x=̇y[σ(x|a)(y|b)].
We are done if N 6� Sx=̇Sy[σ(x|a)(y|b)], so let us assume that N �
Sx=̇Sy[σ(x|a)(y|b)].
This assumption tells us that 〈σ(x|a)(y|b)(Sx), σ(x|a)(y|b)(Sy)〉 ∈ =̇N .
Which means 〈(a + 1), (b + 1)〉 ∈ =̇N . In our metalanguage, our as-
sumption tells us that for any a ∈ |N |, for any b ∈ |N | (a, b ∈ N),
a+ 1 = b+ 1. We know, in our metalanguage, that simple algebra tells
us that this is equivalent to a = b.

We wish to show that N � x=̇y[σ(x|a)(y|b)]. This is true if and only
if 〈σ(x|a)(y|b)(x), σ(x|a)(y|b))(y)〉 ∈ =̇N . That is, 〈a, b〉 ∈ =̇N . In our
metalanguage, this means, for any a ∈ |N |, for any b ∈ |N | (a, b ∈ N),
a = b. This is precisely what we have from our previous assumption.
Thus, it is true that N � x=̇y[σ(x|a)(y|b)]. By our line of reasoning,
this implies that N � ψ2.

Consider ψ3. N � ψ3 if and only ifN � ∀y(¬y=̇0→ ∃x(y=̇Sx))[σ]
where σ is an arbitrary N -assignment. This is true if and only if for
any b ∈ |N |, N � (¬y=̇0 → ∃x(y=̇Sx))[σ(y|b)]. This is true if and
only if N 6� ¬y=̇0[σ(y|b)] or N � ∃x(y=̇Sx)[σ(y|b)]. We are done if
N 6� ¬y=̇0[σ(y|b)], so let us assume that N � ¬y=̇0[σ(y|b)].
This assumption tells us that 〈σ(y|b)(y), σ(y|b)(0)〉 6∈ =̇N . That is,
〈b, 0〉 6∈ =̇N . In our metalanguage, our assumption tells us that for any
b ∈ |N | (b ∈ N), b 6= 0.

We wish to show that N � ∃x(y=̇Sx)[σ(y|b)]. This is true if and only
if there is some a ∈ |N | such that N � y=̇Sx[σ(y|b)(x|a)]. This is
true if and only if 〈σ(y|b)(x|a)(y), σ(y|b)(x|a)(Sx)〉 ∈ =̇N . This means
〈b, a+ 1〉 ∈ =̇N . In our metalanguage, this means that for any b ∈ |N |,
there is some a ∈ |N | such that b = a + 1. Naturally, we would take
such an a to be b − 1. However, in the case that b = 0, b − 1 = −1,
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and this would mean that a 6∈ |N |. Recall, though, that our previous
assumption prevents b = 0, so we have eliminated the only case in
which this is not true. Thus it is true that N � ∃x(y=̇Sx)[σ(y|b)]. By
our line of reasoning, this implies that N � ψ3.

For any ϕ ∈ FLAr
with FV (ϕ) = {x}, consider (ϕx

0 ∧ ∀x(ϕ →
ϕx
Sx)) → ∀xϕ. N � (ϕx

0 ∧ ∀x(ϕ → ϕx
Sx)) → ∀xϕ if and only if N �

(ϕx
0 ∧ ∀x(ϕ→ ϕx

Sx))→ ∀xϕ[σ], where σ is an arbitrary N -assignment.
This is true if and only if N 6� (ϕx

0 ∧ ∀x(ϕ→ ϕx
Sx))[σ] or N � ∀xϕ[σ].

We are done if N 6� (ϕx
0 ∧ ∀x(ϕ → ϕx

Sx))[σ], so let us assume that
N � (ϕx

0 ∧ ∀x(ϕ→ ϕx
Sx))[σ].

This assumption tells us thatN � ϕx
0 [σ] andN � ∀x(ϕ→ ϕx

Sx)[σ]. The
latter means that for any a ∈ |N |, N � ϕ→ ϕx

Sx[σ(x|a)]. Furthermore,
this is true if and only if N 6� ϕ[σ(x|a)] or N � ϕx

Sx[σ(x|a)]. By
the Substitution Lemma, N � ϕx

0 [σ] means that N � ϕ[σ(x|0)]. So
it cannot be the case that for any a ∈ |N |, N 6� ϕ[σ(x|a)] because
N � ϕ[σ(x|0)] and 0 ∈ |N |. Thus it must be that N � ϕx

Sx[σ(x|a)].

By the Substitution Lemma, this means that N � ϕ[σ(x|σ(x|a)(Sx))].
This means N � ϕ[σ(x|SN (a))]. So we have that for any a ∈ |N |
(a ∈ N), N � ϕ[σ(x|(a+1))]. In our metalanguage, let us refer to a+1
as d. Notice that this means that for any d ∈ N \ {0} (because “a+ 1”
prevents d = 0), N � ϕ[σ(x|d)]. However, recall that we also have
from our assumption that N � ϕ[σ(x|0)]. So, in fact, for any d ∈ N,
N � ϕ[σ(x|d)]. Thus our assumption tells us that for any d ∈ |N |,
N � ϕ[σ(x|d)].

We wish to show that N � ∀xϕ[σ]. This is true if and only if for any
d ∈ |N |, N � ϕ[σ(x|d)]. Notice that this is precisely what we have from
our previous assumption. Thus N � ∀xϕ[σ]. By our line of reasoning,
N � (ϕx

0 ∧ ∀x(ϕ→ ϕx
Sx))→ ∀xϕ.

Therefore N models (PA1), (PA2), (PA3), and (PA4).
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(b) Let PA be the set of all LAr-sentences of the form (PA1)-(PA4). Show
that for any n ∈ N

PA ` ∀x(¬( SS...S︸ ︷︷ ︸
n+1 times

x)=̇x)

where the term
SS...S︸ ︷︷ ︸
n+1 times

x

is the variable x preceded by n+ 1 occurrences of the symbol S.

Proof. We know that PA ` ∀x(¬Sx=̇0), because this is of the form
(PA1). We also know that PA ` ∀x(¬Sx=̇0)→ (¬Sx=̇0)xSx, since this
is of the form (Ax2). By modus ponens, PA ` (¬Sx=̇0)xSx. Which
means that PA ` ¬SSx=̇0. Since the variable x does not appear free
in (PA1)-(PA4), we can use the Generalization Theorem to say that
PA ` ∀x(¬SSx=̇0).

We can repeat these steps with the new theorem ∀x(¬SSx=̇0), in an
inductive argument on the amount of S symbols. We come to the
conclusion that for any n ∈ N, PA ` ∀x(¬( SS...S︸ ︷︷ ︸

n+1 times

x)=̇0).

This means, in particular, that PA ` (¬( SS...S︸ ︷︷ ︸
n+1 times

0)=̇0). Let us consider

ϕ = (¬( SS...S︸ ︷︷ ︸
n+1 times

x)=̇x). This means that PA ` ϕx
0 . We would like to

show that PA ` ϕ→ ϕx
Sx.

Consider PA � ϕ→ ϕx
Sx. This is true if and only if PA � ϕ→ ϕx

Sx[σ],
where σ is an arbitrary N -assignment. This is true if and only if
PA 6� ϕ[σ] or PA � ϕx

Sx[σ]. We are done if PA 6� ϕ[σ], so let us assume
that PA � ϕ[σ].

Our assumption means that 〈SNSN ...SN︸ ︷︷ ︸
n+1 times

σ(x), σ(x)〉 6∈ =̇N . In our

metalanguage, our assumption tells us that x+ (n+ 1) 6= x.

We wish to show that PA � ϕx
Sx[σ]. By the Substitution Lemma, this is

true if and only if PA � ϕ[σ(x|σ(Sx))]. This means PA � ϕ[σ(x|x+1)].
This means that 〈SNSN ...SN︸ ︷︷ ︸

n+1 times

σ(x+ 1), σ(x+ 1)〉 6∈ =̇N .
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In our metalanguage this means that (x+1)+(n+1) 6= (x+1). Suppose,
for the sake of contradiction that, in fact, (x+ 1) + (n+ 1) = (x+ 1).
Simple algebra tells us that this is equivalent to x + (n + 1) = x.
However, recall that our assumption tells us that x + (n + 1) 6= x. So
our most recent supposition that (x+ 1) + (n+ 1) = (x+ 1) leads to a
contradiction and must be false. Thus it is true that (x+1)+(n+1) 6=
(x+ 1).

So it is true that 〈SNSN ...SN︸ ︷︷ ︸
n+1 times

σ(x + 1), σ(x + 1)〉 6∈ =̇N , and hence

PA � ϕx
Sx[σ]. This means that PA � ϕ → ϕx

Sx[σ]. Since σ was
arbitrary, this means that PA � ϕ→ ϕx

Sx. By Completeness, it follows
that PA ` ϕ→ ϕx

Sx.

Since x does not appear free in PA (because it does not appear free
in (PA1)-(PA4)), we can use the Generalization Theorem to see that
PA ` ∀x(ϕ → ϕx

Sx). Recall that we have PA ` ϕx
0 . Thus we have

PA ` (ϕx
0 ∧ ∀x(ϕ → ϕx

Sx)). Recall that PA ` (PA4). That is, for any
ϕ ∈ FLAr

with FV (ϕ) = {x}, PA ` (ϕx
0 ∧ ∀x(ϕ→ ϕx

Sx))→ ∀xϕ. Our
specific ϕ only has x as a free variable, so this holds for our formula.
Thus by modus ponens on our two most recent results, PA ` ∀xϕ.

Therefore,
PA ` ∀x(¬( SS...S︸ ︷︷ ︸

n+1 times

x)=̇x)

(c) Show that (PA1)-(PA3) are independent:

i. {ψ1} 6` ψ2 and {ψ1} 6` ¬ψ2

Proof. Suppose for the sake of contradiction that in fact {ψ1} `
ψ2. By the Deduction Theorem, it follow that ` ψ1 → ψ2. By
Soundness, this means that ψ1 → ψ2 is valid. In order to find
a contradiction, we would like to present an L-structure which
satisfies the antecedent, but not the consequent. Consider A with
the properties |A| = N, 0A = 0, and

SA(n) =

{
1, n odd

2, n even
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This L-structure leads to a contradiction because it satisfies ψ1

but does not satisfy ψ2. So ψ1 → ψ2 is not a valid. This is a
contradiction, so it must instead be the case that {ψ1} 6` ψ2.

Suppose for the sake of contradiction, that {ψ1} ` ¬ψ2. By
the same reasoning, this supposition leads to the implication that
ψ1 → ¬ψ2 is valid. In order to find a contradiction, we would like
to present an L-structure which satisfies the antecedent, but does
not the satisfy consequent. In this case, that is actually equivalent
to satisfying both ψ1 and ψ2. In fact, we already have such an L-
structure. As shown in (a), N satisfies both ψ1 and ψ2. So it must
be that ψ1 → ¬ψ2 is not valid. This is a contradiction, so it must
instead bybe the case that {ψ1} 6` ¬ψ2.
Therefore {ψ1} 6` ψ2 and {ψ1} 6` ¬ψ2.

ii. {ψ1} 6` ψ3 and {ψ1} 6` ¬ψ3

Proof. Using the same technique, we would like to show that the
implication that ψ1 → ψ3 is valid, leads to a contradiction. Con-
sider the L-structure A with the properties A = N\{0}, 0A = 0N ,
and SA(n) = SN (n). This leads to a contradiction because A
satisfies ψ1 but it does not satisfy ψ3, and hence ψ1 → ψ3 is not
valid. So it must instead be the case that {ψ1} 6` ψ3.

Suppose for the sake of contradiction, that {ψ1} ` ¬ψ3. By
the same reasoning, this supposition leads to the implication that
ψ1 → ¬ψ3 is valid. In order to find a contradiction, we would like
to present an L-structure which satisfies the antecedent, but does
not satisfy the consequent. In this case, that is actually equivalent
to satisfying both ψ1 and ψ3. In fact, we already have such an L-
structure. As shown in (a), N satisfies both ψ1 and ψ3. So it must
be that ψ1 → ¬ψ3 is not valid. This is a contradiction, so it must
instead be the case that {ψ1} 6` ¬ψ3.
Therefore {ψ1} 6` ψ3 and {ψ1} 6` ¬ψ3.

iii. {ψ2} 6` ψ1 and {ψ2} 6` ¬ψ1

Proof. Using the same technique, we would like to show that the
implication that ψ2 → ψ1 is valid leads to a contradiction. Con-
sider the L-structure A with the properties |A| = {0}, 0A = 0, and
SA(n) = n. A satisfies ψ2 but it does not satisfy ψ1. This means
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that ψ2 → ψ1 is not valid, but that is a contradiction. So it must
instead be the case that {ψ2} 6` ψ1.

Suppose, for the sake of contradiction that {ψ2} ` ¬ψ1. By
Contraposition, this is true if and only if {ψ1} ` ¬ψ2. However,
we showed in i that in fact {ψ1} 6` ¬ψ2. So it must instead be the
case that {ψ2} 6` ¬ψ1.
Therefore {ψ2} 6` ψ1 and {ψ2} 6` ¬ψ1.

iv. {ψ2} 6` ψ3 and {ψ2} 6` ¬ψ3

Proof. Using the same technique, we would like to show that the
implication that ψ2 → ψ3 is valid leads to a contradiction. Con-
sider the L-structure A with the properties |A| = N\{0}, 0A = 0N ,
and SA(n) = SN (n). A satisfies ψ2, but it does not satisfy ψ3, so
this means that ψ2 → ψ3 is not valid. This is a contradiction, so
it must instead be the case that {ψ2} 6` ψ3.

Suppose for the sake of contradiction, that {ψ2} ` ¬ψ3. By
the same reasoning, this supposition leads to the implication that
ψ2 → ¬ψ3 is valid. In order to find a contradiction, we would like
to present an L-structure which satisfies the antecedent, but does
not the satisfy consequent. In this case, that is actually equivalent
to satisfying both ψ2 and ψ3. In fact, we already have such an L-
structure. As shown in (a), N satisfies both ψ2 and ψ3. So it must
be that ψ2 → ¬ψ3 is not valid. This is a contradiction, so it must
instead be the case that {ψ2} 6` ¬ψ3.
Therefore {ψ2} 6` ψ3 and {ψ2} 6` ¬ψ3.

v. {ψ3} 6` ψ1 and {ψ3} 6` ¬ψ1

Proof. Using the same technique, we would like to show that the
implication that ψ3 → ψ1 is valid leads to a contradiction. Con-
sider the L-structure A with the properties |A| = {0}, 0A = 0,
and SA(n) = n. A satisfies ψ3, but it does not satisfy ψ1. This
means that ψ3 → ψ1 is not valid, but that is a contradiction. So
it must instead be the case that {ψ3} 6` ψ1.

Suppose, for the sake of contradiction that {ψ3} ` ¬ψ1. By
Contraposition, this is true if and only if {ψ1} ` ¬ψ3. However,
we showed in ii that in fact {ψ1} 6` ¬ψ3. So it must instead be
the case that {ψ3} 6` ¬ψ1.
Therefore {ψ3} 6` ψ1 and {ψ3} 6` ¬ψ1.
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vi. {ψ3} 6` ψ2 and {ψ3} 6` ¬ψ2

Proof. Using the same technique, we would like to show that the
implication that ψ3 → ψ2 is valid leads to a contradiction. Con-
sider the L-structure A with the properties |A| = {0, 1, 2}, 0A = 0,
and

SA(n) =

{
1, n odd

2, n even

A satisfies ψ3 but it does not satisfy ψ2. So it follows that ψ3 → ψ2

is not valid. This is a contradiction. So it must instead be the
case that {ψ3} 6` ψ2.

Suppose, for the sake of contradiction that {ψ3} ` ¬ψ2. By
Contraposition, this is true if and only if {ψ2} ` ¬ψ3. However,
we showed in iv that in fact {ψ2} 6` ¬ψ3. So it must instead be
the case that {ψ3} 6` ¬ψ2.
Therefore {ψ3} 6` ψ2 and {ψ3} 6` ¬ψ2.

Problem 2. A collection A of L-structure is said to be finitely axiomatizable
if there is a finite set of L-formulas Γ ⊆ FL such that A satisfies Γ iff A ∈ A.
In this case, we say that Γ axiomatizes A.

Consider a language L with no constant or function symbols and whose
only predicate symbol is the two-place predicate <̇. (Assume L contains the
equality predicate =̇).

(a) Recall that a relation is called a linear ordering just in case it is re-
flexive, anti-symmetric, transitive, and connected. Show that the col-
lection of L-structure A such that <̇A is a linear ordering is finitely
axiomatizable.

Proof. Let A be the collection of L-structures A such that <̇A is a linear
ordering. Let Γ = {ψ1, ψ2, ψ3, ψ4}, where

ψ1 := ∀x(x<̇x)

ψ2 := ∀x∀y(x<̇y ∧ y<̇x→ x=̇y)

ψ3 := ∀x∀y∀z(x<̇y ∧ y<̇z → x<̇z)

ψ4 := ∀x∀y(¬x=̇y → (x<̇y ∨ y<̇x))

Suppose that some L-structure A satisfies Γ. That is to say A satisfies
ψ1, ψ2, ψ3, and ψ4. In our metalanguage, we can see that:
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- A satisfies ψ1 if and only if <̇A is reflexive
- A satisfies ψ2 if and only if <̇A is anti-symmetric
- A satisfies ψ3 if and only if <̇A is transitive
- A satisfies ψ4 if and only if <̇A is connected

This means that A satisfies Γ if and only if <̇A is reflexive, anti-
symmetric, transitive, and connected. This is precisely the definition of
<̇A being a linear ordering. We have shown that if some A satisfies Γ,
then it must be the case that <̇A is a linear ordering. Thus A ∈ A.

Suppose that A ∈ A. Then we have <̇A is a linear ordering. This means
that <̇A is reflexive, anti-symmetric, transitive, and connected. From
earlier, we see that A satisfies ψ1 because <̇A is reflexive, A satisfies ψ2

because <̇A is anti-symmetric, A satisfies ψ3 because <̇A is transitive,
and A satisfies ψ4 because <̇A is connected. This means that A satisfies
Γ. We have shown that if A ∈ A, then A satisfies Γ.

A satisfies Γ if and only if A ∈ A. Since Γ is a finite set (with 4
elements), our definition of “finitely axiomatizable” is satsified. There-
fore, the collection of L-structures A such that <̇A is a linear ordering
(which we referred as A) is finitely axiomatizable.

(b) A two-place relation R on a set A is called a well-ordering if it is a linear
ordering and every non-empty subset of A has an R-least element, i.e.,
for every B ⊆ A, if B 6= ∅, then there is an a ∈ B such that for all
b ∈ B, 〈a, b〉 ∈ R.

LetAwo be the collection of L-structures such that <̇A is a well-ordering.
In the following, you will show that Awo is not finitely axiomatizable.

Suppose that Γ ⊆ FL is a finite set of L-formulas axiomatizing Awo.
Consider a language L′ containing <̇ and countably many new constant
symbols c0, c1, c2, .... For each j ∈ N define and L′-formula

ϕj = (cj+1<̇cj) ∧ (¬cj+1=̇cj)
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i. Show that for any j ∈ N, the set

Γ ∪ {ϕj}

is satisfiable.

Proof. Consider some arbitrary A ∈ Awo. Let A′ be the same L-
structure with the modification that each constant of L′ is assigned
such that cA

′
j > cA

′
j+1 for every j ∈ N. Since these constants do

not appear in L, A′ satisfies Γ (and hence each formula of Γ). By
the way that we have assigned constants in A′, ϕj is also satisfied
by A′ for any j ∈ N. So for any j ∈ N, A′ satisfies Γ ∪ {ϕj}.
Therefore, for any j ∈ N, Γ ∪ {ϕj} is satisfiable.

ii. Show that for any k ∈ N, the set

Γ ∪ {ϕj|j ≤ k}

is satisfiable.

Proof. Consider A′ from i.. As determined in i. we know that A′

satisfies Γ and A′ satisfies ϕj for any j ∈ N. This means for
any k ∈ N, A′ satisfies {ϕj|j ≤ k}, because all the indices such
that j ≤ k are in N. It follows that A′ satisfies Γ ∪ {ϕj|j ≤ k}.
Therefore Γ ∪ {ϕj|j ≤ k} is satisfiable.

iii. Show that the set

Γ′ := Γ ∪ {ϕj|j ∈ N}

is satisfiable.

Proof. In i. and ii., we showed that every finite subset of Γ′ is
satisfiable. Therefore, by the Compactness Theorem, Γ′ is satisfi-
able.

iv. Show that if B is an L′-structure satisfying Γ′ then <̇B is not a
well-ordering.

Proof. Suppose, for the sake of contradiction that <̇B is a well-
ordering. In particular, suppose that there is some cBm of every
nonempty subset of |B| such that cBm is the least <̇B-least element
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of the subset. Since B satisfies Γ′, it must be also be the case
that B satisfies ϕm. That is to say, cBm+1<̇

BcBm and cBm+1 6= cBm.

This means cBm is not actually the <̇B-least element of the subset
of |B|. This is a contradiction, so no such element can exist in
this context. Therefore, if B is an L′-structure satisfying Γ′ then
<̇B cannot be a well-ordering.

v. Show there is an L-structure A satisfying Γ such that A 6∈ Awo.
Conclude that Awo is not finitely axiomatizable.

Proof. From iii we know that Γ′ is satisfiable. Let A be an L′-
stcuture which satisfies Γ′. By the way we defined L′ in relation
to L, A is also an L-structure. Since Γ ⊆ Γ′, A satisfies Γ as
well. Recall that we supposed that Γ is a finite axiomatization
of Awo. Since A is an L-structure which satisfies Γ, it follows
that A ∈ Awo. However, we showed in iv that if A is an L′-
structure satisfying Γ′, then <̇A is not a well-ordering. Since <̇A

is not a well-ordering, A 6∈ Awo. This is a contradiction, and
therefore our first supposition that exists such a finite set Γ which
axiomatizes Awo must be incorrect. Therefore, Awo is not finitely
axiomatizable.

(c) Show that the collection of L-structures A such that |A| is uncountable
is not finitely axiomatizable.

Proof. Let A be the set of L-structures A such that |A| is uncountable.
Suppose there exists a set Γ which axiomatizes A. By definition of
axiomatization, this means that for any A ∈ A, A satisfies Γ. Let
Â be an arbitrary L-structure in A. We have that Â satisfies Γ. By
the Downhill Lowenheim-Skolem Theorem, since Γ is satisfiable, there
exists some L-structure B which also satisfies Γ and whose domain is
countable or finite. Since this B satisfies Γ, and since Γ axiomatizes
A, it follows that B ∈ A. But, since B has a countable or finite
domain, in cannot be the case that B ∈ A. This is because A is the
set of L-structures whose domains are uncountable. So B 6∈ A because
a domain cannot be both countable (or finite) and uncountable. We
have arrive at the contradiction that B both is an is not an element of
A. Hence our assumption that there exists a set Γ which axiomatizes
A is false.
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So there is no set Γ which axiomatizes A. In particular, there is no
finite set Γ which axiomatizes A. This means that A is not finitely
axiomatization. Therefore, the collection of L-structures A such that
|A| is uncountable is not finitely axiomatizable.

Problem 3. Recall the language LST of set theory with symbols:

• Constant Symbols: none
• Predicate Symbols: the two-place predicate ∈ (and equality =̇)
• Function Symbols: none

Recall the axioms of pair and union:

ϕpair := ∀x∀y∃z∀w(w∈z ≡ (w=̇x ∨ w=̇y))

ϕunion := ∀x∃y∀z(z∈y ≡ ∃w(w∈x ∧ z∈w))

(a) Consider the LST -structure A with |A| = N and

∈A = < := {〈n,m〉 ∈ N× N|n < m}

Show that A � ϕunion but A 6� ϕpair.

Proof. Let us first consider A � ϕunion. This is true if and only if
A � ∀x∃y∀z(z∈y ≡ ∃w(w∈x ∧ z∈w))[σ], where σ is an arbitrary A-
assignment. This is true if and only if for any a ∈ |A|, there is some
b ∈ |A| such that for any c ∈ |A|,

A � (z∈y ≡ ∃w(w∈x ∧ z∈w))[σ(x|a)(y|b)(z|c)].

This is true if and only if A � z∈y[σ(x|a)(y|b)(z|c)] and A � ∃w(w∈x∧
z∈w)[σ(x|a)(y|b)(z|c)], or A 6� z∈y[σ(x|a)(y|b)(z|c)] and A 6� ∃w(w∈x∧
z∈w)[σ(x|a)(y|b)(z|c)].

Let us check if A � z∈y[σ(x|a)(y|b)(z|c)]. This is true if and only if
〈c, b〉 ∈ ∈A. In our metalanguage, this means that there is some b ∈ N
such that for any c ∈ N, c < b. We know this to be false, as there
is no greatest natural number (or greatest integer). For if there were
such a natural number M , M + 1 would be greater than M . This is
a contradiction since we assumed M to be greater than every natural
number. Thus it follows that A 6� z∈y[σ(x|a)(y|b)(z|c)].

Let us check if A � ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)]. This is
true if and only if for any a ∈ |A|, there is some b ∈ |A| such that
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for any c ∈ |A|, there exists some d ∈ |A| such that A � (w∈x ∧
z∈w)[σ(x|a)(y|b)(z|c)(w|d)]. This is true if and only if both A �
(w∈x)[σ(x|a)(y|b)(z|c)(w|d)] and A � (z∈w)[σ(x|a)(y|b)(z|c)(w|d)].
Let us check if A � (w∈x)[σ(x|a)(y|b)(z|c)(w|d)]. This is true if and
only if 〈d, a〉 ∈ ∈A. In our metalanguage, this means that for any
a ∈ N, there exists some d ∈ N such that d < a. This cannot be the
true, as we can see by considering the case a = 0. There is no such
element d ∈ N such that d < 0. Thus, in cannot be the case that
A � (w∈x)[σ(x|a)(y|b)(z|c)(w|d)].
It follows that it cannot be the case that both

A � (w∈x)[σ(x|a)(y|b)(z|c)(w|d)] and A � (z∈w)[σ(x|a)(y|b)(z|c)(w|d)].

Hence, A 6� ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)].
We have shown that both A 6� z∈y[σ(x|a)(y|b)(z|c)] and A 6� ∃w(w∈x∧
z∈w)[σ(x|a)(y|b)(z|c)]. Thus, A � ϕunion.

Let us now consider A � ϕpair. This is true if and only if A �
∀x∀y∃z∀w(w∈z ≡ (w=̇x∨w=̇y))[σ], where σ is an arbitrary A-assignment.
This is true if for any a ∈ N, for any b ∈ N, there is some c ∈ N such
that for any d ∈ N, A � (w∈z ≡ (w=̇x ∨ w=̇y))[σ(x|a)(y|b)(z|c)(w|d)].
In our metalanguage, this means that for any a ∈ N, for any b ∈ N,
there is some c ∈ N such that for any d ∈ N, d < c implies that d = d
or d = b, and d = a or d = b implies d < c.
Consider the case that a = 9, b = 10. There is no such c which would
restrict d to either be 9 or 10. Since we have have the assumption that
d < c, c must be 11 or greater in order for the possibility of d = 9 or
d = 10. However, if c > 11 and d < c, it is not necessarily the case
that d = 9 or d = 10, because d could also be any natural from 1 to 8.
Thus, by means of counterexample, we have shown that under these
conditions, A 6� (w∈z ≡ (w=̇x ∨ w=̇y))[σ(x|a)(y|b)(z|c)(w|d)]. This
means that A 6� ∀x∀y∃z∀w(w∈z ≡ (w=̇x∨w=̇y))[σ]. Thus, A 6� ϕpair.
Therefore we have shown A � ϕunion but A 6� ϕpair.

(b) Define a sequence of sets recursively as follows:

V0 := ∅
vn+1 := P(Vn)

13



Define the set Vω of hereditarily finite sets by

Vω =
⋃
n∈N

Vn

Consider the LST -structure B with |B| = Vω and

∈B = ∈ := {〈x, y〉 ∈ Vω × Vω|x ∈ y}

Show that B � ϕunion and B � ϕpair.

Proof. Let us first consider B � ϕunion. By a similar line of reason-
ing as part (a), this is true if and only if for and a ∈ Vω, there is
a b ∈ Vω such that for any c ∈ Vω, B � z∈y[σ(x|a)(y|b)(z|c)] and
B � ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)], or B 6� z∈y[σ(x|a)(y|b)(z|c)]
and B 6� ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)].

Let us check B � z∈y[σ(x|a)(y|b)(z|c)]. This is true if and only
if, as interpreted in our metalanguage, there is some b ∈ Vω such that
for any c ∈ Vω, c ∈ b. Suppose that this is true. Since b ∈ Vω, b
is an element of some Vn. This means that {b} ∈ Vn+1, and hence
{b} is also an element of Vω. However {b} 6∈ b, and this contradicts
our supposition. Therefore no such element b can exists, and hence
B 6� z∈y[σ(x|a)(y|b)(z|c)].

Let us check B � ∃w(w∈x∧ z∈w)[σ(x|a)(y|b)(z|c)]. This is true if
and only if for all a ∈ Vω, there is some b ∈ Vω such that for any c ∈ Vω,
there is some d ∈ Vω such that B � (w∈x∧z∈w)[σ(x|a)(y|b)(z|c)(w|d)].
In our metalanguage this is interpreted to mean for all a ∈ Vω, there is
some b ∈ Vω such that for any c ∈ Vω, there is some d ∈ Vω such that
d ∈ a and c ∈ d. Consider the case that a = ∅. It cannot be the case
that there is some d ∈ Vω such that d ∈ a, because in the case a has
no elements.
Thus it cannot be the case that B � ∃w(w∈x∧ z∈w)[σ(x|a)(y|b)(z|c)].
So B 6� ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)]. We have shown that B 6�
z∈y[σ(x|a)(y|b)(z|c)] and B 6� ∃w(w∈x ∧ z∈w)[σ(x|a)(y|b)(z|c)], and
thus B � ϕunion.

Let us consider B � ϕpair. This is true if and only if for any
a ∈ Vω, for any b ∈ Vω, there is some c ∈ Vω such that for any
d ∈ Vω, B � (w∈z ≡ (w=̇x ∨ w=̇y))[σ(x|a)(y|b)(z|c)(w|d)], where
σ is an arbitrary B-assignment. This is true if and only if B �
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(w∈z)[σ(x|a)(y|b)(z|c)(w|d)] and B � (w=̇x∨w=̇y)[σ(x|a)(y|b)(z|c)(w|d)],
or B 6� (w∈z)[σ(x|a)(y|b)(z|c)(w|d)] and B 6� (w=̇x∨w=̇y)[σ(x|a)(y|b)(z|c)(w|d)].

Let us check B � (w∈z)[σ(x|a)(y|b)(z|c)(w|d)]. This is true if and
only if, as interpreted in our metalanguage, there exists some c ∈ Vω
such that for any d ∈ Vω, d ∈ c. We have previously shown this to be
false, earlier in this proof, so B 6� (w∈z)[σ(x|a)(y|b)(z|c)(w|d)].

Let us check B � (w=̇x∨w=̇y)[σ(x|a)(y|b)(z|c)(w|d)]. This is true
if and only if, B � (w=̇x)[σ(x|a)(y|b)(z|c)(w|d)] or B � (w=̇y)[σ(x|a)(y|b)(z|c)(w|d)].
The first of these is true if and only if for any a ∈ Vω, for and b ∈ Vω,
a = b. This is false, because ∅ ∈ Vω and {∅} ∈ Vω, but ∅ 6= {∅}.
The second of these is false, for the same exact reason. Thus, B 6�
(w=̇x ∨ w=̇y)[σ(x|a)(y|b)(z|c)(w|d)].
We have shown that B 6� (w∈z)[σ(x|a)(y|b)(z|c)(w|d)] and B 6� (w=̇x∨
w=̇y)[σ(x|a)(y|b)(z|c)(w|d)]. Thus, it follows that B � ϕpair.
Therefore, we have shown that B � ϕunion and B � ϕpair.

(c) Show that {ϕunion} 6` ϕpair and {ϕunion} 6` ¬ϕpair.

Proof. Suppose, for the sake of contradiction that in fact {ϕunion} `
ϕpair. By the Deduction Theorem, this would imply that ` ϕunion →
ϕpair. By Soundness, this implies that � ϕunion → ϕpair. This means
that for any L-structure A and any A-assignment, A � ϕunion → ϕpair.
In order to find a contradiction, we would like to present an L-structure
which satisfies ϕunion but does not satisfy ϕpair. Notice that the L-
structure, A from (a) does precisely that. Thus, we have arrived at a
contradiction and it must be the case instead that {ϕunion} 6` ϕpair.

Suppose for the sake of contradiction that in fact {ϕunion} ` ¬ϕpair.
By the same reasoning as before, this leads us to the same implication
that ϕunion → ¬ϕpair is valid. In order to find a contradiction, we
would like to present an L-structure which satisfies ϕunion, but does
not satisfy ¬ϕpair. Equivalently, such an L-structure would have to
satisfy ϕunion and ϕpair. Notice that the L-structure B from (b) does
precisely that. Thus we have arrived at a contradiction and it must be
the case instead that {ϕunion} 6` ¬ϕpair.
Therefore, we have shown that {ϕunion} 6` ϕpair and {ϕunion} 6` ¬ϕpair.
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