AP Calculus Smith Name Keanu Vestil

Exam-Chapter Five Section II-Part A

230

A graphing calculator IS NEEDED on this section of the exam.

Question 1

On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour.

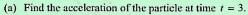
- (a) Find G'(5). Using correct units, interpret your answer in the context of the problem.
- (b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday.
- (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer.
- (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer.

89

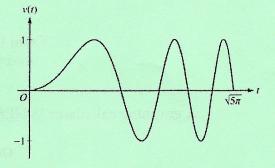
Since
$$G(x)$$
 is the rate at which it arrives $G'(x) = -45\sin(\frac{t^2}{18})$. $\frac{t}{9}$
 $G'(5) = -4$

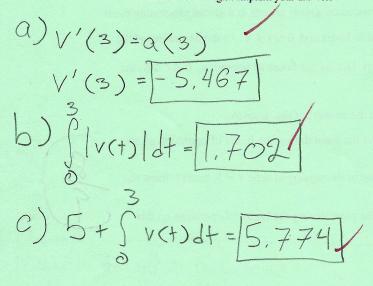
Question 2

A particle moves along the x-axis so that its velocity v at time $t \ge 0$ is given by $v(t) = \sin(t^2)$. The graph of v is shown above for $0 \le t \le \sqrt{5\pi}$. The position of the particle at time t is x(t) and its position at time t = 0 is x(0) = 5.



- (b) Find the total distance traveled by the particle from time t = 0 to t = 3.
- (c) Find the position of the particle at time t = 3.
- (d) For $0 \le t \le \sqrt{5\pi}$, find the time t at which the particle is farthest to the right. Explain your answer.





1/9

d) no time again is

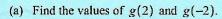
AP Calculus Smith

Exam-Chapter Five Section II-Part B

A graphing calculator is **NOT ALLOWED** on this section of the exam.

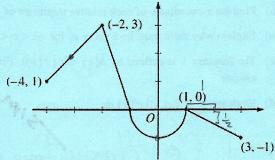
Question 3

Let f be the continuous function defined on [-4, 3]whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by $g(x) = \int_{1}^{x} f(t) dt$.

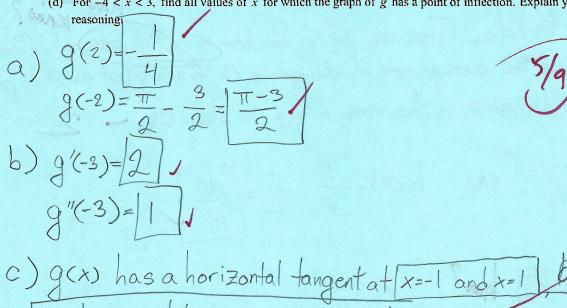


(b) For each of g'(-3) and g''(-3), find the value or state that it does not exist.

(c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each Graph of fof these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.



(d) For -4 < x < 3, find all values of x for which the graph of g has a point of inflection. Explain your



because f(x) C) g(x) has a horizontal tangent at | x=-1 and x=1 | t | x=-1 is a relative maximam, x=1 is not a maxima or minima.

g(x) has a point of inflection at x=0, because g'(x

	х	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < x < 3	3
	f(x)	12	Positive	8	Positive	2	Positive	7
	f'(x)	-5	Negative	0	Negative	0	Positive	1/2
	g(x)	-1	Negative	0	Positive	3	Positive	1
100	g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.

- (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
- (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.

(d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.

(c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.