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Preface

This book provides an introduction to complex analysis for students with
some familiarity with complex numbers from high school. Students should
be familiar with the Cartesian representation of complex numbers and with
the algebra of complex numbers, that is, they should know that i2 = —1. A
familiarity with multivariable calculus is also required, but here the funda-
mental ideas are reviewed. In fact, complex analysis provides a good train-
ing ground for multivariable calculus. It allows students to consolidate
their understanding of parametrized curves, tangent vectors, arc length,
gradients, line integrals, independence of path, and Green’s theorem. The
ideas surrounding independence of path are particularly difficult for stu-
dents in calculus, and they are not absorbed by most students until they
are seen again in other courses.

The book consists of sixteen chapters, which are divided into three parts.
The first part, Chapters I-VII, includes basic material covered in all un-
dergraduate courses. With the exception of a few sections, this material is
much the same as that covered in Cauchy’s lectures, except that the em-
phasis on viewing functions as mappings reflects Riemann’s influence. The
second part, Chapters VIII-XI, bridges the nineteenth and the twentieth
centuries. About half this material would be covered in a typical under-
graduate course, depending upon the taste and pace of the instructor. The
material on the Poisson integral is of interest to electrical engineers, while
the material on hyperbolic geometry is of interest to pure mathematicians
and also to high school mathematics teachers. The third part, Chapters
XII-XVI, consists of a careful selection of special topics that illustrate the
scope and power of complex analysis methods. These topics include Julia
sets and the Mandelbrot set, Dirichlet series and the prime number theo-
rem, and the uniformization theorem for Riemann surfaces. The final five
chapters serve also to complete the coverage of all background necessary
for passing PhD qualifying exams in complex analysis.

Note to the instructor
There is a glut of complex analysis textbooks on the market. It is a beauti-
ful subject, so beautiful that a large number of experts have been moved to
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write their own accounts of the area. In spite of the plethora of textbooks,
I have never found an introduction to complex analysis that is completely
suitable for my own teaching style and audiences.

The students in each of my various audiences have begun the course with
a wide range of backgrounds. Teaching to students with disparate back-
grounds and preparations has posed a major teaching challenge. I respond
by including early some topics that can be treated in an elementary way and
yet are usually new and capture the imagination of students with already
some background in complex analysis. For example, the stereographic pro-
jection appears early, the Riemann surface of the square root function is
explained early at an intuitive level, and both conformality and fractional
linear transformations are treated relatively early. Exercises range from the
very simple to the quite challenging, in all chapters. Some of the exercises
that appear early in the book can form the basis for an introduction to a
more advanced topic, which can be tossed out to the more sophisticated
students. Thus for instance the basis is laid for introducing students to
the spherical metric already in the first chapter, though the topic is not
taken up seriously until much later, in connection with Marty’s theorem in
Chapter XII.

The second problem addressed by the book has to do with flexibility
of use. There are many routes through complex analysis, and many in-
structors hold strong opinions concerning the optimal route. I address this
problem by laying out the material so as to allow for substantial flexibil-
ity in the ordering of topics. The instructor can defer many topics (for
instance, the stereographic projection, or conformality, or fractional linear
transformations) in order to reach Cauchy’s theorem and power series rel-
atively early, and then return to the omitted topics later, time permitting.

There is also flexibility with respect to adjusting the course to under-
graduate students or to beginning graduate students. The bulk of the
book was written with undergraduate students in mind, and I have used
various preliminary course notes for Chapters I-XI at the undergraduate
level. By adjusting the level of the lectures and the pace I have found the
course notes for all sixteen chapters appropriate for a first-year graduate
course sequence.

One of my colleagues wrote in commenting upon the syllabus of our
undergraduate complex analysis course that “fractional powers should be
postponed to the end of the course as they are very difficult for the stu-
dents.” My philosophy is just the reverse. If a concept is important but
difficult, I prefer to introduce it early and then return to it several times, in
order to give students time to absorb the idea. For example, the idea of a
branch of a multivalued analytic function is very difficult for students, yet it
is a central issue in complex analysis. I start early with a light introduction
to the square root function. The logarithm function follows soon, followed
by phase factors in connection with fractional powers. The basic idea is
returned to several times throughout the course, as in the applications of
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residue theory to evaluate integrals. I find that by this time most students
are reasonably comfortable with the idea.

A solid core for the one-semester undergraduate course is as follows:

Chapter 1

Chapter II

Sections III.1-5

Sections IV.1-6

Sections V.1-7

Sections VI.1-4

Sections VII.1-4

Sections VIII.1-2

Sections I1X.1-2

Sections X.1-2

Sections XI1.1-2
To reach power series faster I would recommend postponing 1.3, 11.6-7,
I11.4-5, and going light on Riemann surfaces. Sections I1.6-7 and II1.4-5
should be picked up again before starting Chapter IX.

Which additional sections to cover depends on the pace of the instructor
and the level of the students. My own preference is to add more contour
integration (Sections VIL.5 and VII.8) and hyperbolic geometry (Section
IX.3) to the syllabus, and then to do something more with conformal map-
ping, as the Schwarz reflection principle (Section X.3), time permitting. To
gain time, I mention some topics (as trigonometric and hyperbolic func-
tions) only briefly in class. Students learn this material as well by reading
and doing assigned exercises. Finishing with Sections XI.1-2 closes the cir-
cle and provides a good review at the end of the term, while at the same
time it points to a fundamental and nontrivial theorem (the Riemann map-
ping theorem).

Note to the student

You are about to enter a fascinating and wonderful world. Complex analysis
is a beautiful subject, filled with broad avenues and narrow backstreets
leading to intellectual excitement. Before you traverse this terrain, let me
provide you with some tips and some warnings, designed to make your
journey more pleasant and profitable.

Above all, give some thought to strategies for study and learning. This
is easier if you are aware of the difference between the “what,” the “how,”
and the “why,” (as Halmos calls them). The “what” consists of defini-
tions, statements of theorems, and formulae. Determine which are most
important and memorize them, at least in slogan form if not precisely. Just
as one maintains in memory the landmark years 1066, 1453, and 1776 as
markers in the continuum of history, so should you maintain in memory
the definition of analytic function, the Cauchy-Riemann equations, and the
residue formula. The simplest of the exercises are essentially restatements
of “what.”
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The “how” consists in being able to apply the formulae and techniques
to solve problems, as to show that a function is analytic by checking the
Cauchy-Riemann equations, or to determine whether a polynomial has a
zero in a certain region by applying the argument principle, or to evaluate
a definite integral by contour integration. Before determining “how” you
must know “what.” Many of the exercises are “how” problems. Working
these exercises and discussing them with other students and the instructor
are an important part of the learning process.

The “why” consists in understanding why a theorem is true or why a
technique works. This understanding can be arrived at in many different
ways and at various levels. There are several things you can do to under-
stand why a result is true. Try it out on some special cases. Make a short
synopsis of the proof. See where each hypothesis is used in the proof. Try
proving it after altering or removing one of the hypotheses. Analyze the
proof to determine which ingredients are absolutely essential and to deter-
mine its depth and level of difficulty. The slogan form of the Jordan curve
theorem is that “every closed curve has an inside and an outside” (Section
VIII.7). What is the level of difficulty of this theorem? Can you come up
with a direct proof? Try it.

Finally, be aware that there is a language of formal mathematics that is
related to but different from common English. We all know what “near”
means in common English. In the language of formal mathematics the
word carries with it a specific measure of distance or proximity, which is
traditionally quantified by € > 0 or a “for every neighborhood” statement.
Look also for words like “eventually,” “smooth,” and “local.” Prepare to
absorb not only new facts and ideas but also a different language. Develop-
ing some understanding of the language is not easy — it is part of growing
up and becoming mathematically sophisticated.
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Introduction

Complex analysis is a splendid realm within the world of mathematics,
unmatched for its beauty and power. It has varifold elegant and often-
times unexpected applications to virtually every part of mathematics. It
is broadly applicable beyond mathematics, and in particular it provides
powerful tools for the sciences and engineering.

Already in the eighteenth century Euler discovered the connection be-
tween trigonometric functions and exponential functions through complex
analysis. (It was he who invented the notation e*®.) However, it was not
until the nineteenth century that the foundations of complex analysis were
laid. Among the many mathematicians and scientists who contributed,
there are three who stand out as having influenced decisively the course of
development of complex analysis. The first is A. Cauchy (1789-1857), who
developed the theory systematically along the lines we shall follow, with
the complex integral calculus, Cauchy’s theorem, and the Cauchy inte-
gral formula playing fundamental roles. The other two are K. Weierstrass
(1815-1897) and B. Riemann (1826-1866), who appeared on the mathe-
matical scene about the middle of the nineteenth century. Weierstrass
developed the theory from a starting point of convergent power series, and
this approach led towards more formal algebraic developments. Riemann
contributed a more geometric point of view. His ideas had a tremendous
impact not only on complex analysis but upon mathematics as a whole,
though his views took hold only gradually.

In addition to the standard undergraduate material, we shall follow sev-
eral strands and obtain several poster theorems, which together with the
more elementary material cover what might be called the “complex anal-
ysis canon,” the part of complex analysis included in the syllabus of the
typical PhD qualifying exam.

One of the strands we shall follow culminates in the prime number theo-
rem. Already Euler in the eighteenth century had written down an infinite
product for the zeta function, connecting the prime numbers to complex
analysis. In the 1830’s Dirichlet used variants of the zeta function to prove
the existence of infinitely many primes in arithmetic progressions. Riemann
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did fundamental work connecting the zeta function to the distribution of
prime numbers. And finally just before the close of the nineteenth century
J. Hadamard and C.J. de la Vallée Poussin independently proved the prime
number theorem using techniques of complex analysis.

Another strand we shall follow is the conformal mapping of domains
in the plane and more generally of Riemann surfaces. We shall aim at
two poster results: the Riemann mapping theorem and the uniformization
theorem for Riemann surfaces. The definitive version of the Riemann map-
ping theorem, which one finds in all complex analysis textbooks today, was
proved by W. Osgood in 1900. The uniformization theorem for Riemann
surfaces was proved independently in 1907 by P. Koebe and H. Poincaré,
thereby solving Hilbert’s 22nd problem from his famous address to the
International Mathematical Congress in 1900.

The first quarter of the twentieth century was one of rapid development
of the foundations of complex analysis. P. Montel put his finger on the
notion of compactness in spaces of meromorphic functions and developed
the theory of normal families. P. Fatou and G. Julia used Montel’s theorem
in their seminal work around 1914-1921 on complex iteration theory. On
another front, O. Perron developed in 1923 a powerful method for solving
the Dirichlet problem.

By the end of the first quarter of the twentieth century, the complex anal-
ysis canon had been established, and nearly all the main results constituting
the undergraduate and first-year graduate courses in complex analysis had
been obtained. Nevertheless, throughout the twentieth century there has
been much exciting progress on the frontiers of research in complex anal-
ysis, and meanwhile proofs of the most difficult foundational results have
been gradually simplified and clarified. While the complex analysis canon
has remained relatively static, the developments at the frontier have led
to new perspectives and shifting emphases. For instance, the current re-
search interest in dynamical systems and the advent of computer graphics
contributed to elevating the work of Fatou and Julia to a more prominent
position.

What lies before you is the distillation of the essential, the useful, and
the beautiful, from two centuries of labor. Enjoy!
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The Complex Plane and
Elementary Functions

In this chapter we set the scene and introduce some of the main charac-
ters. We begin with the three representations of complex numbers: the
Cartesian representation, the polar representation, and the spherical rep-
resentation. Then we introduce the basic functions encountered in complex
analysis: the exponential function, the logarithm function, power functions,
and trigonometric functions. We view several concrete functions w = f(z)
as mappings from the z-plane to the w-plane, and we consider the problem
of describing the inverse functions.

1. Complex Numbers

A complex number is an expression of the form z = z+14y, where z and y
are real numbers. The component z is called the real part of z, and y is
the imaginary part of z. We will denote these by

rz = Rez,

y = Imz.

The set of complex numbers forms the complex plane, which we denote
by C. We denote the set of real numbers by R, and we think of the real
numbers as being a subset of the complex plane, consisting of the complex
numbers with imaginary part equal to zero.

The correspondence

z=x+1y «— (z,y)

is a one-to-one correspondence between complex numbers and points (or
vectors) in the Euclidean plane R?. The real numbers correspond to the
z-axis in the Euclidean plane. The complex numbers of the form iy are
called purely imaginary numbers. They form the imaginary axis iR

1



2 I The Complex Plane and Elementary Functions

Z=x+iy Z+w=x+uw+i(y+v

iye ex+iy

w=u+1iv

~e

in the complex plane, which corresponds to the y-axis in the Euclidean
plane.
We add complex numbers by adding their real and imaginary parts:

(x+wy)+ (u+iv) = (z+u)+i(y+v).

Thus Re(z + w) = Re(z) + Re(w), and Im(z + w) = Im(z) + Im(w) for
z,w € C. The addition of complex numbers corresponds to the usual
componentwise addition in the Euclidean plane.

The modulus of a complex number z = z + 1y is the length /22 + y? of
the corresponding vector (x,y) in the Euclidean plane. The modulus of 2
is also called the absolute value of z, and it is denoted by |z|:

|z| = Vx2+ 92
The triangle inequality for vectors in the plane takes the form
lz +w| < |z| + |w], z,w € C.

By applying the triangle inequality to z = (2 — w) + w, we obtain |z| <
|z — w| + |w|. Subtracting |w|, we obtain a very useful inequality,

(1.1) |z —w| > |z| — |w], z,w € C.

Complex numbers can be multiplied, and this is the feature that distin-
guishes the complex plane C from the Euclidean plane R2. Formally, the
multiplication is defined by

(z +w)(u+w) = zu—yv+i(zv + yu).

One can check directly from this definition that the usual laws of algebra
hold for complex multiplication:

(z122)2z3 = z1(2223), (associative law)
Z129 = 2921, (commutative law)
21(22 + 23) = z129 + 2123. (distributive law)

With respect to algebraic operations, complex numbers behave the same as
real numbers. Algebraic manipulations are performed on complex numbers
using the usual laws of algebra, together with the special rule 2 = —1.
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Every complex number z # 0 has a multiplicative inverse 1/z, which is
given explicitly by

1 T —y
- = -, z=x+1yeC, z#0.
z z2 + 92 Y 7
Thus for instance, the multiplicative inverse of 7 is 1/7 = —i.
Z=x+1Iy
0
-9
Z=x-1y

The complex conjugate of a complex number z = z + 7y is defined to
be z = z — 1y. Geometrically, Z is the reflection of z in the z-axis. If we
reflect twice, we return to z,

N

= z, z € C.

Some other useful properties of complex conjugation are

z+w = Z+w, z,w e C,
W = zw, z,w e C,
2l = |2, zeC,
1z|? = zZ, z € C.

Each of these identities can be verified easily using the definition of z
and |z|. The last formula above allows us to express 1/z in terms of the
complex conjugate z:

1/z = z/|z|?, z€C,z#0.
The real and imaginary parts of z can be recovered from z and z, by
Rez = (z+2)/2, z € C,
Imz = (z— 2)/2i, zeC.
From |zw|? = (zw)(Zw) = (2Z)(ww) = |z|?|w|?, we obtain also
lzw| = |z||w], z,w € C.
A complex polynomial of degree n > 0 is a function of the form

p(z) = anzn"l'an—lzn——1 +---+ a1z + ap, z€C,
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where ag, - - - ,a, are complex numbers, and a,, # 0. A key property of the
complex numbers, not enjoyed by the real numbers, is that any polynomial
with complex coefficients can be factored as a product of linear factors.

Fundamental Theorem of Algebra. Every complex polynomial p(z) of
degree n > 1 has a factorization

p(z) = c(z—21)™ - (2 — 2k) ™,

where the z;’s are distinct and m; > 1. This factorization is unique, up to
a permutation of the factors.

We will not prove this theorem now, but we will give several proofs later.
Some remarks are in order.

The uniqueness of the factorization is easy to establish. The points
z1,...,z2r are uniquely characterized as the roots of p(z), or the zeros
of p(z). These are the points where p(z) = 0. The integer m; is character-
ized as the unique integer m with the property that p(z) can be factored
as (2 — z;)™q(z) where ¢(2) is a polynomial satisfying g(z;) # 0.

For the proof of the existence of the factorization, one proceeds by induc-
tion on the degree n of the polynomial. The crux of the matter is to find
a point z; such that p(z;) = 0. With a root z; in hand, one easily factors
p(z) as a product (z — z1)q(z), where ¢(z) is a polynomial of degree n — 1.
(See the exercises.) The induction hypothesis allows one to factor ¢(z) as a
product of linear factors, and this yields the factorization of p(z). Thus the
fundamental theorem of algebra is equivalent to the statement that every
complex polynomial of degree n > 1 has a zero.

Example. The polynomial p(z) = z2? + 1 with real coefficients cannot be
factored as a product of linear polynomials with real coefficients, since it
does not have any real roots. However, the complex polynomial p(z) =
22 4+ 1 has the factorization

2241 = (z—i)(z+1),
corresponding to the two complex roots +i of 22 + 1.
Exercises for 1.1

1. Identify and sketch the set of points satisfying;:

(a) |z—1—-1i] =1 f) 0<Imz<m
(b)1<|2z—-6] <2 (g) - m<Rez<m

(c) e =12+ |z+1]2< 8 (h) |Rez| < |7|
(d)]z—1]+|z+1] <2 (i) Re(iz+2)>0

(e) |z — 1] < |2] G) lz—i?+|z+i?> <2

2. Verify from the definitions each of the identities (a) z +w = z +
w, (b) zw = zw, (c) |z| = |z|, (d) |2|®> = 2Z. Draw sketches to
illustrate (a) and (c).
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3.

10.

11.

Show that the equation |z|2 —2 Re(@z)+|a|? = p? represents a circle
centered at a with radius p.

Show that |z] < |Rez| + |Imz|, and sketch the set of points for
which equality holds.

Show that |Rez| < |z| and |Imz| < |z|. Show that
lz+w® = [2]* + |w]* + 2 Re(zw).
Use this to prove the triangle inequality |z + w| < |z| + |w]|.
For fixed a € C, show that |z —a|/|]1 —az| = 1if |z]| = 1 and
1—az #0.
Fix p > 0, p # 1, and fix 29, z; € C. Show that the set of z satisfying

|z — 29| = p|z — 21| is a circle. Sketch it for p = % and p = 2, with
20 = 0 and z; = 1. What happens when p = 17

Let p(z) be a polynomial of degree n > 1 and let zg € C. Show that
there is a polynomial A(z) of degree n — 1 such that p(z) = (z —
z0)h(z) +p(20). In particular, if p(z09) = 0, then p(z) = (z — 29)h(2).

Find the polynomial ~(z) in the preceding exercise for the following
choices of p(z) and z¢: (a) p(z) = 22 and 29 = 14, (b) p(z) = 23+2%+2
and zo = —1, (¢) p(2) =1+ 2z+22+---+ 2™ and 29 = —1.

Let q(z) be a polynomial of degree m > 1. Show that any polyno-
mial p(z) can be expressed in the form

p(z) = h(z)g(z) +r(2),

where h(z) and r(z) are polynomials and the degree of the remain-
der r(z) is strictly less than m. Hint. Proceed by induction on
the degree of p(z). The resulting method is called the division
algorithm.

Find the polynomials h(z) and r(z) in the preceding exercise for
p(z) = 2" and q(z) = 22 — 1.

2. Polar Representation

Any point (z,y) # (0,0) in the plane can be described by polar coordi-
nates r and #, where r = \/x2 + y2 and 6 is the angle subtended by (z,y)
and the z-axis. The angle 8 is determined only up to adding an integral
multiple of 27. The Cartesian coordinates z, y are recovered from the polar
coordinates 7, 8 by

{ T =r1cosf,

y = rsinf.
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r =l

f=argz

If we write the polar representation in complex notation, we obtain
(2.1) z = x+1y = r(cosf +isinb).

Here r = |z| is the modulus of z. We define the argument of z to be the
angle 8, and we write

0 = argz.

Thus arg z is a multivalued function, defined for z # 0. The principal
value of arg z, denoted by Arg z, is specified rather arbitrarily to be the
value of 6 that satisfies —m < # < w. The values of arg z are obtained from
Arg z by adding integral multiples of 27:

argz = {Argz+27k : k=0,+1,+2,...}, z # 0.
Example. The principal value of argi is Argi = w/2. The principal value

of arg(1 — 1) is Arg(l — i) = —7/4.

ie

<—] /2

-1 -4 1

—ie 1-i

It will be convenient to introduce the notation
(2.2) e®® = cos@ +isiné.
From (2.1) we obtain
z = re'’, r=|z|, § = arg=z.

This representation is called the polar representation of z. The sine and
cosine functions are 27-periodic, that is, they satisfy sin(6 + 27m) = sin#,
cos(f + 2mm) = cosf. Thus the various choices of argz yield the same

value for e*?,

et0+2mm) — o0 0, 41,42, ... .
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Example. Some common complex exponentials are

/3 _ 1+ /3i g _ 141
2 ?

7

et — 1, 6271'/2 =i,

Also note that
et = 1, m=0,+1,+2,... .

ﬁ ie
2

/3 74

1 1
2 V2

—

Several useful identities satisfied by the exponential function are

(2.3) e = 1,
(2.4) eif = ¢
(2.5) 1/e? = e,

The identity (2.3) is equivalent to the trigonometric identity cos? §+sin® 8 =
1, while (2.4) follows from cos(—6) = cos# and sin(—6) = —sin 6.
One of the most important properties of the exponential function is the
addition formula
(2.6) et0+¢) — ¢0eie —00 < 6, ¢ < 0o.
In view of the definition (2.2), this is equivalent to
cos(f + )+ isin(d + ¢) = (cosf + isinB)(cosp + isiny).

Multiplying out the right-hand side and equating real and imaginary parts,
we obtain the equivalent pair of identities
.7) { cos(f + ¢) = cosBcosyp — sinfsin p,
' sin(@ + ¢) = cosfsiny + sinfcos ¢,
which are the addition formulae for sine and cosine. Thus the addition
formula (2.6) for the complex exponential is a compact form of the addition
formulae (2.7) for the sine and cosine functions, and it is much easier to
remember!

The properties (2.4), (2.5), (2.6) of the exponential function correspond
respectively to the following properties of the argument function:
(2.8) argz = —argz,
(2.9) arg(l/z) = —argz,

(2.10) arg(zize) = argz; + arg 2o,
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where each formula is understood to hold modulo adding integral multiples
of 2. To establish (2.8) and (2.9), note that if the polar representation
of z is re® then the polar representation of z is re~*®, and that of 1/z is
(1/r)e~%. For (2.10), write z; = r€*¥', zy = rye®2, and use the addition
formula to obtain the polar form of z;z,,

Z129 = rireeiei®? — rlrge’(91+92).

The addition formula (2.6) can be used to derive formulae for cos(nf)
and sin(n#) in terms of cos # and sin§. Write

cos(nf) +isin(nf) = ™ = (e¥)" = (cos@ +isinh)",

expand the right-hand side, and equate real and imaginary parts. This
yields expressions for cos(nf) and sin(n6) that are polynomials in cos 8 and
sin #. These identities are known as de Moivre’s formulae. For instance,
by equating cos(30) + isin(36) to

(cosf +isinf)® = cos® @ — 3cosBsinf + i(3 cos? fsin § — sin® 6)
and taking real and imiginary parts, we obtain
cos(3) = Re(cosf +isinh)® = cos®f — 3cosfsin’ 6,
sin(3) = Im(cosf +isinh)®> = 3cos? Hsinh — sin® 4.
A complex number z is an nth root of w if 2™ = w. Thus the nth roots
of w are precisely the zeros of the polynomial z™ —w of degree n. Since this
polynomial has degree n, w has at most n nth roots. If w # 0, then w has

exactly n nth roots, and these are determined as follows. First express w
in polar form,

w = pe'’.
The equation 2™ = w becomes
n _in6

e = pe'®.

Thus r™ = p and nf = ¢+ 27k for some integer k. This leads to the explicit
solutions
/n

21k
+ — ’
n n

r o= pt
hd

6 = k=0,1,2,... ,n—1,

where we take the usual positive root of p. Since these n roots are distinct,
and there are at most n nth roots, this list includes all the nth roots of w.
Other values of k£ do not give different roots, since any other integer k leads
to a value of # that is obtained from the above list by adding an integral
multiple of 2. Graphically, the roots are distributed in equal arcs on the
circle centered at 0 of radius |w|'/™.
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w = pei‘;'
@ z= rei6’ - pl/nei;pln
8=ln

Example. To find and plot the square roots of 41, first express 47 in polar
form pe'?. Here p = |4i| = 4 and ¢ = arg(44) = w/2. One root is given by
/P €¥/2 = 2¢'"/4. The other is 2e*("/4+™ = —2¢i"/4 In Cartesian form,

the roots are vV/4i = +(v/2 + \/iz)

Example. To find and plot the cube roots of 1 + 7, express 1 + ¢ in polar
form as v/2 e*"/4. The polar form of the three cube roots is given by

21/66i(7r/12+2kﬂ'/3)’ k= 0,172-

i — 3 piTl4
7, = 21634 ol+i=12e o 27il3

29 = 21/6¢i712

) 47i/3
2 =2l/621177r/12 €

cube roots of 1 + i cube roots of unity

The nth roots of 1 are also called the nth roots of unity. They are
given explicitly by

wi = eXrk/n 0<k<mn-1.

Graphically, they are situated at equal intervals around the unit circle in
the complex plane. Thus the two square roots of unity are ¢® = 1 and
e = —1.

The procedure for finding the nth roots of w # 0 can be rephrased in
terms of the mth roots of unity. We express w = pe®?/™ in polar form
as above. One root is given by zy = p'/™e*/™. The others are found by
multiplying zg by the nth roots of unity:

2y = ZoWg = pl/”ei“”/"e%ik/", 0<k<n-1.

Exercises for 1.2

1. Express all values of the following expressions in both polar and
cartesian coordinates, and plot them.
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i= eiﬂ/Z

e 3ril4 em/4

e Tril4

[ = 372

The eight eighth roots of unity

(a) Vi (c) V-1 () (—8)"/3 (g) (1+1)° o
GVIET @V @ e-9r m ()
V2
. Sketch the following sets:
(a) |arg z| < w/4 (c) |z| = argz
(b)0 < arg(z—1—1) <7/3 (d) log |z| = —2argz

. For a fixed complex number b, sketch the curve {e*® +be=% : 0 <

6 < 2r}. Differentiate between the cases |b| < 1, |b| =1 and |b| > 1.
Hint. First consider the case b > 0, and then reduce the general
case to this case by a rotation.

. For which n is ¢ an nth root of unity?

. For n > 1, show that

(8) 1+z+224---+2"=(1-2")/(1 - 2), z # 1,
1 sin(n+1)8

b) 1 0 0+ s LRI Vi

(b) 1+ cos 8+ cos 20 + - - - + cos nb 2+ 3sind)2

. Fix n > 1. Show that the nth roots of unity wy, ..., wn_1 satisfy:

(a) (z—wo)(z—w1) (2 —wp_1)=2"—1,
(b) wo+ -+ +wp_1=0,
(€) wo--wp_1=(=1)""1,

n—-1
0, 1<k<n-1,
@ >k~
7=0

n, k=n.

. Fix R>1and n > 1, m > 0. Show that

zm l R™
<

z2n+1| -~ RP—1" 2l = &.

Sketch the set where equality holds. Hint. See (1.1).
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8. Show that cos20 = cos?# — sin®6 and sin 26 = 2cos@sinf using
de Moivre’s formulae. Find formulae for cos 46 and sin 46 in terms
of cos 8 and sin 6.

3. Stereographic Projection

The extended complex plane is the complex plane together with the
point at infinity. We denote the extended complex plane by C*, so that
C* = CU{oo}. One way to visualize the extended complex plane is through
stereographic projection. This is a function, or map, from the unit sphere
in three-dimensional Euclidean space R® to the extended complex plane,
which is defined as follows. If P = (XY, Z) is any point of the unit sphere
other than the north pole N = (0,0,1), we draw a straight line through N
and P, and we define the stereographic projection of P to be the point
z =+ 1y ~ (x,y,0) where the straight line meets the coordinate plane
Z = 0. The stereographic projection of the north pole N is defined to
be oo, the point at infinity.

An explicit formula for the stereographic projection is derived as follows.
We represent the line through P and N parametrically by N + t(P —
N), —oo < t < oo. The line meets the (z,y)-plane at a point (z,y,0) that
satisfies

(z,4,0) = (0,0,1) +¢[(X,Y,;Z) — (0,0,1)]
= (tX,tY,1+t(Z - 1))

for some parameter value t. Equating the third components, we obtain
0 =1+ t(Z — 1), which allows us to solve for the parameter value ¢,

t = 1/(1 - 2).
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Equating the first two components and substituting this parameter value,
we obtain equations for z and y in terms of X, Y, and Z,

r = tX = X/(1-2),
{y =ty =Y/(1-2).

To solve for X,Y, Z in terms of £ and y, we use the defining equation
X2+ Y? + 72 =1 of the sphere. Multiplying this equation by t?> and
substituting tX = z,tY =y, tZ =t—1, we obtain z2+y? +t2 -2t +1 = t2,
which becomes

t = %(|z|2+1).
This yields
X = 2z/(|z]*+1),
Y = 2y/(|z]?+1),
Z =1-1/t = (|2 -1)/(]z]* + 1).

The point (X,Y,Z) of the sphere is determined uniquely by the point
z = x + 1y of the plane. Thus the stereographic projection provides a one-
to-one correspondence between points P of the sphere, except the north
pole N, and points z = x + 7y of the complex plane.

Lines of longitude on the sphere correspond to straight lines in the plane
through 0, while lines of lattitude on the sphere correspond to circles cen-
tered at 0. As the radii of the circles tend to oo, the lines of lattitude on
the sphere tend to the north pole, so we are justified in making the north
pole N correspond to the point at oco.

Theorem. Under the stereographic projection, circles on the sphere cor-
respond to circles and straight lines in the plane.
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To see this, we will use the fact that the locus of points in the plane
satisfying a quadratic equation of the form

(3.1) 4y’ +ar+by+c = 0

is either a circle, a point, or empty. This can be seen by completing the
square and rewriting (3.1) as (z +a/2)2 + (y +b/2)?> = (a®> +b%)/4 — <.
The three cases correspond respectively to whether (a?+b2%)/4 —c is strictly
positive, zero, or strictly negative.

We begin with a circle on the sphere, and we express it as the intersection
of the sphere and a plane AX+BY +CZ = D. The stereographic projection
of the circle then consists of points z = x + 7y that satisfy
2z 2y |z|2 -1

+C

ATy
|z|2 + 1 1z]2+1 |22 + 1

We rewrite this as
(3.2) (C — D)(z® + y*) + 242+ 2By — (C + D) = 0.

If C = D, the locus of (3.2) is a straight line. If C # D, then we divide by
C — D, and the equation (3.2) has the form (3.1). Being the projection of
a circle on the sphere, the locus cannot be a point or empty, so it must be
a circle in the plane.

The argument is reversible. Every circle in the plane is the locus of
solutions of an equation of the form

2 +y>’+ Az +By+D = 0.

Define A, B,C,D so that 2A = A", 2B=B',C-D=1,—(C+ D)= D',
and the corresponding set on the sphere is the intersection of the sphere
with the plane AX+BY +CZ = D. The intersection cannot be empty or a
point; hence it is a circle on the sphere. Similarly, every straight line in the
plane is the locus of solutions of an equation of the form A’z + B’y = D/,
which also determines a plane via 24 = A’, 2B = B/, C = D = D’/2, and
this plane meets the sphere in a circle through the north pole.

Since straight lines in the plane correspond to circles on the sphere
through the north pole, it is convenient to regard a straight line in the
complex plane as a circle through co. With this convention the theorem
asserts simply that stereographic projection maps circles on the sphere to
circles in the extended complex plane.

Exercises for 1.3

1. Sketch the image under the spherical projection of the following
sets on the sphere: (a) the lower hemisphere Z < 0, (b) the polar
cap 2 < Z < 1, (c) lines of lattitude X = 1 — Z2cosf, Y =

1 - Z2sin8, for Z fixed and 0 < # < 27, (d) lines of longitude
X =vV1—-22%2c0s8,Y =+/1— Z2sinb, for 0 fixedand —1 < Z < 1.
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(e) the spherical cap A < X < 1, with center lying on the equator,
for fixed A. Separate into cases, according to various ranges of A.

. If the point P on the sphere corresponds to z under the stereo-

graphic projection, show that the antipodal point — P on the sphere
corresponds to —1/z.

Show that as z traverses a small circle in the complex plane in the
positive (counterclockwise) direction, the corresponding point P on
the sphere traverses a small circle in the negative (clockwise) direc-
tion with respect to someone standing at the center of the circle and
with body outside the sphere. (Thus the stereographic projection
is orientation reversing, as a map from the sphere with orientation
determined by the unit outer normal vector to the complex plane
with the usual orientation.)

Show that a rotation of the sphere of 180° about the X-axis cor-

responds under stereographic projection to the inversion z — 1/z
of C.

. Suppose (z,y,0) is the spherical projection of (X,Y, Z). Show that

the product of the distances from the north pole N to (X,Y, Z) and
from N to (x,y,0) is 2. What is the situation when (X,Y, Z) lies
on the equator of the sphere?

We define the chordal distance d(z,w) between two points z,w €
C* to be the length of the straight line segment joining the points P
and @ on the unit sphere whose stereographic projections are z
and w, respectively. (a) Show that the chordal distance is a metric,
that is, it is symmetric, d(z,w) = d(w, z); it satisfies the triangle
inequality d(z,w) < d(z,¢{) + d(¢,w); and d(z,w) = 0 if and only if
z = w. (b) Show that the chordal distance from z to w is given by

2|z — w]

V1412121 + w2’

(c) What is d(z,00)? Remark. The expression for d(z,w) shows
that infinitesimal arc length corresponding to the chordal metric is
given by

d(z,w) =

z,w e C.

2ds
d = —
where ds = |dz| is the usual Euclidean infinitesimal arc length.

The infinitesimal arc length do(z) determines another metric, the
spherical metric o(z,w), on the extended complex plane. See
Section IX.3.
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7. Consider the sphere of radius % in (X,Y, Z)-space, resting on the
(X,Y,0)-plane, with south pole at the origin (0,0, 0) and north pole

at (0,0,1). We define a stereographic projection of the sphere onto

the complex plane as before, so that corresponding points (X, Y, Z)

and z ~ (z,y,0) lie on the same line through the north pole. Find

the equations for z = x + iy in terms of X, Y, Z, and the equations

for X,Y, Z in terms of z. What is the corresponding formula for the
chordal distance? Note. In this case, the equation of the sphere is

2
X2+Y24 (Z-1)2=1.

4. The Square and Square Root Functions

Real-valued functions of a real variable can be visualized by graphing them
in the plane R2. The graph of a complex-valued function f(z) of a complex
variable z requires four (real) dimensions. Thus some techniques other
than graphing in R* must be developed for visualizing and understanding
functions of a complex variable. One technique is to graph the modulus of
the function |f(z)| as a surface in three-dimensional space R®. Another is
to graph separately the real and imaginary parts of f(z) in R3.

We describe a different technique for gaining insight into the behavior
of the function f(z). We create two planes, a z-plane for the domain
space and a w-plane for the range space. We then view f(z) as a mapping
from the z-plane to the w-plane, and we analyze how various geometric
configurations in the z-plane are mapped by w = f(z) to the w-plane.
Which geometric configurations in the z-plane to consider depends very
much on the specific function f(z). To illustrate how this method works,

we consider the simplest nontrivial function, the square function w = 22.
w=f(2)
P
z-plane w-plane
From the polar decomposition w = 22 = r2e?*®  we have
2
(41) lwl = |z]%,
(4.2) argw = 2 argz.

Equation (4.1) shows that the circle |z| = 7o in the z-plane is mapped to
the circle jw| = rZ in the w-plane. As z = roe*® moves around the circle
in the positive direction at constant angular velocity, the image w = r%emo

moves around the image circle, in the same direction but at double the
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Y
Y
Y
\
Y
Y
Y

4

z-plane w-plane

angular velocity. As z makes one complete loop, the image w makes two
complete loops around the image circle.

Equation (4.2) shows that a ray {argz = 6y} issuing from the origin
in the z-plane is mapped to a ray in the w-plane of twice the angle. As
z traverses the ray from the origin to oo at constant speed, the value w
traverses the image ray from 0 to oo, starting slowly and increasing its
speed. The positive real axis in the z-plane, which is a ray with angle 0, is
mapped to the positive real axis in the w-plane by the usual rule z — z2.
As z traverses the ray {argz = 7 /4}, the image w traverses the positive
imaginary axis, and as z traverses the positive imaginary axis, the image w
traverses the negative axis. As the rays in the z-plane sweep out the first
quadrant, the image rays in the w-plane sweep out the upper half-plane,
and as the rays in the z-plane sweep out the second quadrant, the image
rays in the w-plane sweep out the lower half-plane. Eventually, we reach
the ray along the negative real axis in the z-plane, which is mapped again
to the positive real axis in the w-plane, and as we continue, the behavior
is repeated in the lower half of the z-plane.

Now we turn to the problem of finding an inverse function for w = z2.
Every point w # 0 is hit by exactly two values of z, the two square roots
+y/w. In order to define an inverse function, we must restrict the domain
in the z-plane so that values w are hit by only one z. There are many ways
of doing this, and we proceed somewhat arbitrarily as follows.

Note that as rays sweep out the open right half of the z-plane, with the
angle of the ray increasing from —7/2 to 7/2, the image rays under w = 22
sweep out the entire w-plane except for the negative axis, with the angle of
the ray increasing from —x to w. This leads us to draw a slit, or branch
cut, in the w-plane along the negative axis from —oo to 0, and to define
the inverse function on the slit plane C\(—o0,0]. Every value w in the slit
plane is the image of exactly two z-values, one in the (open) right half-plane
{Re z > 0}, the other in the left half-plane {Re z < 0}. Thus there are two
possibilities for defining a (continuous) inverse function on the slit plane.
We refer to each determination of the inverse function as a branch of the
inverse. One branch f;(w) of the inverse function is defined by declaring
that f1(w) is the value z such that Rez > 0 and z2 = w. Then f;(w) maps
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the slit plane C\(—o0, 0] onto the right half-plane {Re z > 0}, and it forms
an inverse for 22 on that half-plane. To specify fi(w) explicitly, express
w = pe*¥ where ¢ lies in the range —m < ¢ < 7, and then

filw) = pe? w=pe¥, -t <p<m.

The function f;(w) is called the principal branch of \/w. It is expressed
in terms of the principal branch of the argument function as

filw) = |w[1/26i(Argw)/2, w € C\(—00,0].

As w approaches a point —r on the negative real axis (—oo, 0) from above,
the values f;(w) approach the value i1/7 on the positive imaginary axis. We
express this by writing f;(—r + 0) = i4/r. Similarly, as w approaches —r
from below, the values fi(w) approach the value —i,/r on the negative
imaginary axis, that is, fi(—r —0) = —iy/r. The branch cut (—o0,0] in
the w-plane can be regarded as having two edges, and the function f;(w)
extends continuously to each edge. The top edge, labeled “+” in the figure,
is mapped to the positive imaginary axis by fi(w), and the bottom edge,
labeled “—”, is mapped to the negative imaginary axis by fi(w).

z =f,(w) = +/w (principal branch)
e

++H+++++

I(rrr1r 1t I N+++++4H+

Z =fz(W) = —fl(W)
A~

B

P11 IN+H+H+H++H+

We use the other value of \/w to define a second branch fa(w) of the
inverse function y/w. For this we use a second copy of the w-plane, as in
the figure. On this sheet the second branch of \/w is defined by fa(w) =
— fi(w). This branch maps the slit plane onto the left half-plane {Rez <
0}. As w approaches a point —r on the negative axis (—oo,0) from above,
the values fo(w) approach the value —i4/r on the negative imaginary axis,
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and as w approaches —r from below, the values fo(w) approach the value
+1+/T on the positive imaginary axis. Again we think of the slit as having
two edges, though on this sheet the top edge is mapped to the negative
imaginary axis and the bottom edge is mapped to the positive imaginary
axis. Further, we have

fi(=r +10) = iv/F = fa(—r —i0), fi(=r —i0) = —ix/7 = fo(—r +i0).

This leads us to the idea of constructing a surface to represent the inverse
function by gluing together the edges where the functions f; (w) and f;(w)
coincide. We glue the top edge of the branch cut on the sheet corresponding
to fi(w) to the bottom edge of the branch cut on the sheet corresponding
to fo(w), and similarly for the remaining two edges, to obtain a two-sheeted
surface. Since the values of fi(w) and fo(w) coincide on the edges we have
glued together, they determine a function f(w) defined on the two-sheeted
surface, with values in the z-plane that move continuously with w.

Since each sheet of the surface is a copy of the slit w-plane, we may think
of the sheets as “lying over” the w-plane. Each w € C\{0} corresponds
to exactly two points on the surface. The function f(w) on the surface
represents the multivalued function /w in the sense that the values of v/w
are precisely the values assumed by f(w) at the points of the surface lying
over w.

The surface we have constructed is called the Riemann surface of \/w.
The surface is essentially a sphere with two punctures corresponding to 0
and co. One way to see this is to note that the function f(w) maps the
surface one-to-one onto the z-plane punctured at 0. Another way to see this
is to deform the surface by prying open each sheet at the slit, opening it to
a hemisphere, and then joining the two hemispheres along the slit edges to
form a sphere with two punctures corresponding to the endpoints 0 and oo
of the slits.

Exercises for 1.4

1. Sketch each curve in the z-plane, and sketch its image under w = z2.

(a) |z—1] =1 (c)y=1 )y’ =12%2-1, >0
b)z=1 dy=z+1 f)y=1/z, £#0

2. Sketch the image of each curve in the preceding problem under the
principal branch of w = /z, and also sketch, on the same grid but
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in a different color, the image of each curve under the other branch

of \/z.

(a) Give a brief description of the function z — w = 2°, considered
as a mapping from the z-plane to the w-plane. (Describe what
happens to w as z traverses a ray emanating from the origin, and
as z traverses a circle centered at the origin.) (b) Make branch cuts
and define explicitly three branches of the inverse mapping. (c)
Describe the construction of the Riemann surface of z1/3.

3

Describe how to construct the Riemann surfaces for the following
functions: (a) w = 24, (b) w = vz — i, (¢) w = (2—1)%/%. Remark.
To describe the Riemann surface of a multivalued function, begin
with one sheet for each branch of the function, make branch cuts
so that the branches are defined continuously on each sheet, and
identify each edge of a cut on one sheet to another appropriate edge
so that the function values match up continuously.

5. The Exponential Function

We extend the definition of the exponential function to all complex num-
bers z by defining

e* = e*cosy+ietsiny, z=x+1iy € C.

Since €% = cosy + ¢siny, this is equivalent to

e* = e%e', z=1x+1y.

This identity is simply the polar representation of e?,

(5.1)
(5.2)

"] = €7,

arge® = .

If z is real (y = 0), the definition of e* agrees with the usual exponential
function e*. If z is imaginary (z = 0), the definition agrees with the
definition of e* given in Section 2.
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A fundamental property of the exponential function is that it is periodic.
The complex number ) is a period of the function f(z) if f(z+ A) = f(2)
for all z for which f(z) and f(z + A) are defined. The function f(z) is
periodic if it has a nonzero period. Since sinx and cosy are periodic
functions with period 27, the function e® is periodic with period 2mwi:

e* T2 = ¢, z e C.

In fact, 27ik is a period of e* for any integer k.
Another fundamental property of the exponential function is the addi-
tion formula

(5.3) et = e%e¥, z,w € C.

To check this, let 2z =z + 7y and w = u + iv. Then

ez+w — er+uez(y+v) — e:ceuez'yeiv — eZe¥
where we have used the addition formulae for e* and €.
From the addition formula (5.3) we have e?e~% = €? = 1. Consequently,

the inverse of e* is e™ %,

l/e* = e™ %, zeC.

To understand the exponential function better, we view w = e* as a
mapping from the z-plane to the w-plane. If we restrict the exponential
function to the real line R, we obtain the usual exponential function z —
e, —o0 < r < oo, which maps the real line R to the positive real axis
(0,0). The equation (5.2) shows that an arbitrary horizontal line z + iy,
—o00 < T < 00, is mapped to the curve efe®™°, —o0o < x < oo, which is a
ray issuing from the origin at angle y,. If we move the horizontal line up,
the angle subtended by the ray increases, and the image ray is rotated in
the positive (counterclockwise) direction. As we move the horizontal line
upwards from the z-axis at yo = 0 to height yo = 7/2, the image rays
sweep out the first quadrant in the w-plane. The horizontal line at height
Yo = 7/2 is mapped to the positive imaginary axis, the horizontal line of
height yo = 7 is mapped to the negative real axis, and when we reach the
horizontal line of height yo = 27, the image rays have swept out the full
w-plane and returned to the positive real axis. The picture then repeats
itself periodically. Each point in the w-plane, except w = 0, is hit infinitely
often, by a sequence of z-values spaced at equal intervals of length 27 along
a vertical line.

While the images of horizontal lines are rays issuing from the origin, the
images of vertical lines are circles centered at the origin. The equation (5.1)
shows that the image of the vertical line zo + iy, —00 < y < 00, is a circle
in the w-plane of radius €. As z traverses the vertical line, the value w
wraps infinitely often around the circle, completing one turn each time
y = Im z increases by 2.
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horizontal lines — rays

vertical lines — circles

Exercises for 1.5

1. Calculate and plot e? for the following points z:
(a) 0 (c) m(i —1)/3 (e) wi/m, m=123,...
b)mi+1  (d)37mi f)m@iE-1), m=123,...

2. Sketch each of the following figures and its image under the expo-
nential map w = e?. Indicate the images of horizontal and vertical
lines in your sketch.

(a) the vertical strip 0 < Rez < 1,

(b) the horizontal strip 57/3 < Imz < 87/3,
(c) the rectangle 0 <z <1, 0 <y < w/4,
(d) the disk |z| < 7/2,

(e) the disk |z]| <,

(f) the disk |z| < 37/2.

3. Show that e® = ez.

4. Show that the only periods of e* are the integral multiples of 27,
that is, if et* = e? for all z, then ) is an integer times 27i.

6. The Logarithm Function

For z # 0 we define log z to be the multivalued function

logz = log|z| +iargz

= log|z| + 1 Arg z + 2mim, m=0,£1,+2,....

The values of log z are precisely the complex numbers w such that e¥ = z.
To see this, we plug in and compute. If w = log |z| + i Arg z + 2wim, then

1 } ; 3
e? — eog]zlezArgze27mm — |Z|ezArgz = z,
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where we have used the identities e'°8™ = r for r > 0 and &**"™ = 1.
On the other hand, suppose that w = u + iv is an arbitrary complex
number such that e = z. Then the polar representation of z is z = re®’,
where 7 = |z| = e*. Thus u = log|z|, and v is a value of argz, so that
v = Arg z + 2mm for some integer m.

Recall that the principal value Argz of argz is the value 8 satisfying
—m < 8 < . We define the principal value of log z to be

(6.1) Logz = log|z| +1iArg z, z # 0.

Thus Log z is a single-valued inverse for e, with values in the horizontal
strip —m < Imw < 7. Once we know the principal value of log z, we obtain
all values by

logz = Logz + 2mim, m=0,%£1,£2,....

Example. The values of log(1 + i) are given by
log(1+17) = log|1+ i|+iarg(l + 1)
= logV2+in/4+2mim, m=0,+1,+2,....
The principal value is
Log(l +1i) = logV2+ in/4.

The values form a vertical two-tailed sequence of equally spaced points.

47 —
37 —
27— ®

T —

. Log(1 + i) =log V2 +in/4

—7i —

2w — ®
=37
—A7i | ®

Now we regard w = Logz as a map from the slit z-plane C\(—o0, 0]
to the w-plane. Since the exponential function maps horizontal lines to
rays issuing from the origin, its inverse, the logarithm function, maps rays
issuing from the origin to horizontal lines. In fact, formula (6.1) shows that
the ray {Argz = 6y} is mapped onto the horizontal line {Imw = 6p}. As z
traverses the ray from 0 to co, the image w traverses the entire horizontal
line from left to right. As 6y increases between —7 and 7, the rays sweep
out the slit plane C\(—o0, 0], and the image lines fill out a horizontal strip
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{—-7 < Imw < 7} in the w-plane. Similarly, the formula (6.1) shows
that the image of a punctured circle {|z| = r, —m < argz < =w} is the
vertical interval {Rew = log|z|, —m < Im z < 7}, where the vertical line
{Rew = log |z|} meets the horizontal strip.

w=logz + ++++++ +l+++++++ 4+
A A A
0]

Y
Y
Y

As with the inverse 1/Z of 22, we can represent the multivalued function
log z as a single-valued function on a Riemann surface spread over the z-
plane, with one sheet for each branch of the function. The construction
is as follows. This time we have infinitely many branches f,,(z) of the
logarithm function, defined for z # 0 and given explicitly by

fm(z) = Logz+ 2mim, —00 < m < 0.

For each branch, we take a copy of the complex plane and slit it along
the negative real axis as before, to obtain a copy S, of the slit plane
C\(—o0, 0]. We regard the function f,,(z) as defined on the mth sheet S,.
Since the values of f,,,(z) at the top edge of the slit on S, match the values
of fm41(z) at the bottom edge of the slit on S,,,1, we glue together these
two edges. We do this for each m, and we obtain a surface resembling a
spiral stairway leading infinitely far both up and down. The composite
function f(z) defined to be f,,(z) on the mth sheet is then continuously
defined on the surface. It represents the total function log z, in the sense
that the values of log z are precisely the values of f(z) at the points of the
surface that correspond to z.




24 I The Complex Plane and Elementary Functions

Exercises for 1.6

1. Find and plot log z for the following complex numbers z. Specify
the principal value. (a) 2, (b) i, (c) 1+, (d) (1 +iv3)/2.

2. Sketch the image under the map w = Log z of each of the following
figures.
(a) the right half-plane Rez > 0,
(b) the half-disk |z| <1, Rez >0,
(c) the unit circle |z| =1,
(d) the slit annulus /e < |z] < €2, z ¢ (—€2, —\/e),
(e) the horizontal line y =e,
(f) the vertical line z =e.

3. Define explicitly a continuous branch of log z in the complex plane
slit along the negative imaginary axis, C\[0, —700).

4. How would you make a branch cut to define a single-valued branch
of the function log(z + 7 — 1)? How about log(z — 29)?

7. Power Functions and Phase Factors

Let a be an arbitrary complex number. We define the power function z¢
to be the multivalued function

2% = eolosz z #0.

Thus the values of z* are given by

22 = ea[log|z|+iArgz+27rim]

= ¢« Logz 2miam m=0,%x1,%2,....
The various values of z® are obtained from the principal value e®!°82
by multiplying by the integral powers (e2™*)™ of e2™**. If « is itself an
integer, then €?™*® = 1, and the function 2% is single-valued, the usual
power function. If a = 1/n for some integer n, then the integral powers

e2mim/n of e27i/7 gre exactly the nth roots of unity, and the values of z1/™
are the n nth roots of z discussed earlier (Section 2).

Example. The values of i’ are given by
ezlogz — e Argi—2mm _ e—ﬂ’/Qe—Qﬂ'm7 m=0,+1,42 ....

The values form a two-tailed sequence of positive real numbers, accumu-
lating at 0 and at +o00. Similarly, the values of i~* are given by

eilog(—-i) = e~ Arg(—i)—-27k _ er/Qe—Qﬂk’ k=0,%£1,%2,....
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e—57r/2 e—‘ir/2 837.'/2 >

Danger! If we multiply the values of i* by those of =%, we obtain infinitely
many values e2™, —oco < n < oo. Thus

(™) # =1,

and the usual algebraic rules do not apply to power functions when they
are multivalued.

If o is not an integer, we cannot define z* on the entire complex plane
in such a way that the values move continuously with 2. To define the
function continuously, we must again make a branch cut. We could make
the cut along the negative real axis, but this time let us make the cut along
the positive real axis, from 0 to +00. We define a continuous branch of 2z
on the slit plane C\[0, co) explicitly by

w = r%ef, for z=re, 0 <6 < 2r.

At the top edge of the slit, corresponding to # = 0, we have the usual power
function r® = e* 1987 At the bottom edge of the slit, corresponding to
0 = 27, we have the function r®e?"**. If we fix r and let 8 increase from 0
to 27, z = re*® starts at the top edge of the slit and proceeds around a
circle, ending at the bottom edge of the slit. As z describes this circle, the
values w = r*€** move continuously, starting from 7 at the top edge of
the slit and ending at 7%e?™** at the bottom edge. Thus the values of this
branch of z* on the bottom edge are e>™** times the values at the top edge.
The multiplier e?7% is called the phase factor of 2% at z = 0.

ALY
N

If we continue any other choice w = r®e!®+2™m) of @ around the same
circle, the values of w move continuously from r®e?7**™ at the top edge of
the slit to ree!@(2m+2mm) — pag2mame2mia gt the hottom edge. Again the
final w-value is the phase factor e?™*® times the initial w-value.

The same analysis shows that the function (z — z9)* has a phase factor
of €™ at z = 2z, in the sense that if any branch of w = (2 — 29)% is
continued around a full circle centered at zp in the positive direction, the
final w-value is €2™*© times the initial w-value. This can be seen by making
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a change of variable ( = z — z3. Further, this result does not change if
we multiply (z — z0)® by any (single-valued) function. We state the result
formally for emphasis.

Phase Change Lemma. Let g(z) be a (single-valued) function that is
defined and continuous near zo. For any continuously varying branch of
(z—29)® the function f(z) = (2 —20)*g(z) is multiplied by the phase factor
e?™ when z traverses a complete circle about zy in the positive direction.

Example. If o is an integer, the phase factor of z® at 0 is e?™*® = 1, in
accord with the fact that z¢ is single-valued.

Example. The phase factor of \/z — zg at zp is e™* = —1. As z traverses a
circle about zp, the values of f(z) = y/z — 29 return to —f(z). The phase

factor of 1/4/29 — z = t/y/2 — zg at z¢ is also —1.

Example. The function /z(1 — z) has two branch points, at 0 and at 1.
At z = 0, each branch of \/1 — z is single-valued, so the phase factor of
each branch of 1/z(1 — z) at z = 0 is the same as that of /z, which is
—1. Similarly, the phase factor of \/2(1 —z) at z = 1 is the same as
that of /1 — 2z, which is —1. Now suppose we draw a branch cut from 0
to 1 and consider the branch f(z) of 4/2(1 — z) that is positive on the top
edge of the slit. As z traverses a small circle around 0, the values of f(z)
return to — f(z) on the bottom edge of the slit, corresponding to the phase
factor —1 at z = 0. As z traverses the bottom edge of the slit and returns
to the top edge around a small circle at z = 1, the values of —f(z) are
again multiplied by the phase factor —1. Thus the values of f(z) return
to the original positive value on the top edge of the slit when z traverses
a dogbone path encircling both branch points. It follows that the branch
f(z) is a continuous single-valued function in the slit plane C\[0,1]. Now
we may proceed, in analogy with /2 and log z, to define a Riemann surface
for the function 1/2(1 — z) that captures both branches of the function. We
require two sheets, since there are two choices of branches for the function
v/2(1 — z). On each sheet we make the same cut, to form two copies of
C\[0,1]. On one sheet we define F(z) to be the branch f(z) of \/2(1 — z)
specified above, and on the other sheet we define F(z) to be the other
branch —f(z) of 1/z(1 — z). The sheets are then joined by identifying edges
of the slits in such a way that F(z) extends continuously to the surface.
In this case, the top edge of the slit [0,1] on one sheet is identified to the
bottom edge of the slit on the other sheet, and the remaining two edges
are identified, to form the two-sheeted Riemann surface of \/z(1 — z).

In constructing the Riemann surface of a multivalued function, the num-
ber of sheets always coincides with the number of branches of the function.
However, the branch cuts can be made in many ways, as long as there are



Exercises [

surface with closed path

enough branch cuts so that each branch of the function can be defined con-
tinuously in the slit plane. For instance, the branch cuts for the function
f(z) = v/2(1 — z) could as well be made from —oo to 0 along the negative
real axis and from +1 to +o0 along the positive real axis. The branch cuts
could also be made along more complicated paths from 0 to 1.

Example. Consider \/z — 1/z. We rewrite this as vz — 1v/z + 1/4/z. The

function has three finite branch points, at 0 and +1. We must also con-
sider co as a branch point, since there is a phase change corresponding to
a phase factor —1 as z traverses a very large circle centered at 0. Each
branch point has phase factor —1, so any branch of the function returns
to its original values when z traverse a path encircling two of the branch
points. Thus it suffices to make two cuts, say (—oco, —1] and [0,1]. Each
branch of the function is continuous on C\((—o0, —1] U [0,1]). Again top
edges of slits on one sheet are identified to bottom edges of the others.
The resulting surface is a torus (doughnut, or inner tube), with punctures
corresponding to the branch points. What would happen if we were to
make initially an additional branch cut along [—1,0], in addition to the
two branch cuts above? The values of each branch at the top edge of
the new cut would agree with the values of the same branch on the bot-
tom edge. Consequently, we would identify the top and bottom edges of
the slit [—1,0] on the same sheet, thereby effectively erasing the slits and
arriving at the same doughnut surface.

00000 _} [ 1
X XX +++

Exercises for 1.7

1. Find all values and plot: (a) (1+1)%, (b) (=i)'*%, (c) 272, (d) (1+
iv3)-9,

2. Compute and plot log [(1 + 7)*].
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Sketch the image of the sector {0 < argz < w/6} under the map
w = 2% for (a) a =3, (b) a =1 (c) a=1i+2 Useonly the
principal branch of z¢.

Show that (zw)®* = 2%w*, where on the right we take all possible
products.

Find i* . Show that it does not coincide with ¢ = i~ 1.

Determine the phase factors of the function z%(1 — z)® at the branch
points z = 0 and z = 1. What conditions on a and b guarantee that
z%(1 — z)® can be defined as a (continuous) single-valued function
on C\[0, 1]?

Let £, < 2 < --- < =, be n consecutive points on the real axis.
Describe the Riemann surface of \/(z — z1) - -- (2 — z,,) . Show that
for n =1 and n = 2 the surface is topologically a sphere with certain
punctures corresponding to the branch points and co. What is it
when n = 3 or n = 47 Can you say anything for general n? (Any
compact Riemann surface is topologically a sphere with handles.
Thus a torus is topologically a sphere with one handle. For a given
n, how many handles are there, and where do they come from?)

Show that 1/z%2 —1/z can be defined as a (single-valued) continu-
ous function outside the unit disk, that is, for |z| > 1. Draw branch
cuts so that the function can be defined continuously off the branch
cuts. Describe the Riemann surface of the function.

Consider the branch of the function /z(23 — 1)(z + 1)3 that is pos-
itive at z = 2. Draw branch cuts so that this branch of the function
can be defined continuously off the branch cuts. Describe the Rie-
mann surface of the function. To what value at z = 2 does this
branch return if it is continued continuously once counterclockwise
around the circle {|z| = 2}7

Consider the branch of the function 1/z(23 — 1)(z + 1)3(z — 1) that
is positive at z = 2. Draw branch cuts so that this branch of the
function can be defined continuously off the branch cuts. Describe
the Riemann surface of the function. To what value at z = 2 does
this branch return if it is continued continuously once counterclock-
wise around the circle {|z| = 2}?

Find the branch points of +vz3 —1 and describe the Riemann
surface of the function.
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8. Trigonometric and Hyperbolic Functions

If we solve the equations

e = cosf +isinb,
e = cosf —isinf

for cos @ and sin @, we obtain

et 4 =10
cosf = —
619 _ e—ie
sinf = -
21

This motivates us to extend the definition of cosz and sin z to complex
numbers z by

et? +e~iz
COsSz = —2—, A (C,
) et? etz
Sinz = —é'_—’ zZ € C.
1

This definition agrees with the usual definition when z is real. Evidently,
cos z is an even function,

cos(—z) = cosz, z € C,
while sin z is an odd function,
sin(—z) = —sinz, zeC.
As functions of a complex variable, cosz and sin z are periodic, with pe-
riod 2,
cos(z +2m) = cosz, z € C,
sin(z + 27) = sinz, ze C.

After some algebraic manipulation, one checks (Exercise 1) that the addi-
tion formulae for cos z and sin z remain valid,

cos(z +w) = coszcosw — sin zsinw, z,we C,
sin(z + w) = sinzcosw + cos z sin w, z,we C.
If we substitute w = —z in the addition formula for cosine, we obtain the

familiar identity
cos’ z +sin’z = 1, z € C.

We shall see, in fact, that any reasonable identity that holds for analytic
functions of a real variable, such as cosz and sinz, also holds when the
functions are extended to be functions of a complex variable. This will be a
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special case of the principle of permanence of functional equations,
proved in Chapter V.

The hyperbolic functions coshz = (e*+e~*)/2 and sinhz = (e —e™7%)/2
are also extended to the complex plane in the obvious way, by

62_*_6"'2
coshz = — z2€C,
. ef —e ?
sinhz = — zeC.

Both cosh z and sinh z are periodic, with period 2,

cosh(z + 2m1) = coshz, z€C,
sinh(z + 27:) = sinh z, zeC.
Evidently, cosh z is an even function and sinh z is an odd function. There
are addition formulae for cosh z and sinh z, derived easily from the addition
formulae for cos z and sin z (Exercise 1).
When viewed as functions of a complex variable, the trigonometric and

the hyperbolic functions exhibit a close relationship. They are obtained
from each other by rotating the domain space by /2,

cosh(iz) = cosz, cos(iz) = coshz,
sinh(iz) = isinz, sin(iz) = isinhz.
If we use these equations and the addition formula
sin(z + 1y) = sinz cos(iy) + cos z sin(zy),
we obtain the Cartesian representation for sin z,
sinz = sinz coshy + i coszsinhy, z=x+1yeC.

Thus

2

. . 2 .
|sin z|? = sin®z cosh® y + cos® z sinh? y.

Using cos?z + sin?z = 1 and cosh? y = 1 + sinh? y, we obtain
|sinz|> = sin®z + sinh?y.

From this formula it is clear where the zeros of sin z are located; sinz = 0
only when sinz = 0 and sinhy = 0, and this occurs only on the real axis
y = 0, at the usual zeros 0, =7, 27, ... of sinz. Similarly, the only zeros
of cos z are the usual zeros of cosx on the real axis (Exercise 2).

Other trigonometric and hyperbolic functions are defined by the usual
formulae, such as

si
tanz = , tanhz = , z € C.

Thus tan z and tanh z are odd functions, and tanh(iz) = itan z.
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The inverse trigonometric functions are multivalued functions, which can
be expressed in terms of the logarithm function. Suppose w = sin™ ! z, that
is,

sinw = —— =z.
21
Then e2** —2ize*” — 1 = 0. This is a quadratic equation in ¥, which can
be solved by the usual quadratic formula. The solutions are given by

e = iz++1-—22.

Taking logarithms we obtain
sin"!'z = —ilog (iz +V1- 22) :

This identity is to be understood as a set identity, in the sense that w sat-
isfies sin w = z if and only if w is one of the values of —ilog (z'z + V1 — 22).
To obtain a genuine function, we must restrict the domain and specify the
branch. One way to do this is to draw two branch cuts, from —oo to —1 and
from +1 to +oco along the real axis, and to specify the branch of v/1 — 22
that is positive on the interval (—1,1). With this branch of v/1 — 22, we

obtain a continuous branch —i Log (iz + /1 —22) of sin™! 2.

Exercises for 1.8

1. Establish the following addition formulae:
(a) cos(z + w) = cos zcosw — sin z sinw,
(b) sin(z + w) = sin z cosw + cos z sin w,
(c¢) cosh(z + w) = cosh z cosh w + sinh z sinh w,
(d) sinh(z + w) = sinh z coshw + cosh z sinh w,

2. Show that |cosz|? = cos?z + sinh?y, where z = z + iy. Find all
zeros and periods of cos z.

3. Find all zeros and periods of cosh z and sinh z.

4. Show that

tan=! 1 o 141z
z = — ,
% B\1_ 4z

where both sides of the identity are to be interpreted as subsets of
the complex plane. In other words, show that tanw = z if and only
if 27w is one of the values of the logarithm featured on the right.

5. Let S denote the two slits along the imaginary axis in the complex
plane, one running from 7 to +i00, the other from —i to —ico. Show
that (1 +4z)/(1 — iz) lies on the negative real axis (—o0,0] if and
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only if z € S. Show that the principal branch

1 1+:
Tan"'z = — Log( ZZ)

21 1—1z
maps the slit plane C\S one-to-one onto the horizontal strip {—7 <
Imw < 7}

1

. Describe the Riemann surface for tan™" z.

. Set w = cosz and ¢ = €**. Show that ( = w + v/w? — 1. Show that

cos'w = —ilog [wi w2—1] ,

where both sides of the identity are to be interpreted as subsets of
the complex plane.

. Show that the vertical strip | Re(w)| < 7/2 is mapped by the func-

tion z(w) = sinw one-to-one onto the complex z-plane with two
slits (—oo, —1] and [+1,+00) on the real axis. Show that the in-
verse function is the branch of sin™!z = —iLog (iz +V1—22)
obtained by taking the principal value of the square root. Hint.
First show that the function 1 — 22 on the slit plane omits the nega-
tive real axis, so that the principal value of the square root is defined
and continuous on the slit plane, with argument in the open interval
between —7/2 and 7 /2.
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Analytic Functions

In this chapter we take up the complex differential calculus. After review-
ing some basic analysis in Section 1, we introduce complex derivatives and
analytic functions in Section 2 and we show that the rules for complex differ-
entiation are the same as the usual rules for differentiation. In Section 3 we
characterize analytic functions in terms of the Cauchy-Riemann equations.
In Sections 4 and 5 we give several applications of the Cauchy-Riemann
equations, to inverses of analytic functions and to harmonic functions. In
Section 6 we discuss conformality, which is a direct consequence of complex
differentiability. We close in Section 7 with a discussion of fractional linear
transformations, which form an important class of analytic functions.

1. Review of Basic Analysis

We begin by reviewing the background material in analysis that will (even-
tually) be called upon, and we say something about the language of formal
mathematics. For the most part, we will not phrase our arguments com-
pletely formally, though any bilingual person will be able to translate easily
to the language of formal mathematics in such a way that our development
becomes completely rigorous.

Since the complex derivative is defined as a limit, we require some back-
ground material on limits and continuity. To be able to define and work
with analytic functions, we also require some basic topological concepts,
including open and closed sets, and domains. The confident reader may
pass directly to the definitions of complex derivative and analytic function
in the next section, and refer back to the material in this section only when
needed.

We begin with the notion of a convergent sequence. For this we have
two definitions.

Informal Definition. A sequence {s,} converges to s if the sequence
eventually lies in any disk centered at s.

33
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The language of formal mathematics serves to quantify this statement
and make it precise. The “small disk” is traditionally given radius € > 0.
That “s, lies in the disk” means that |s, — s| < €. That an event “even-
tually” occurs is translated to the statement that there is N > 1 such
that the event occurs for n > N. Thus the translation of the definition of
convergent sequence to the language of formal mathematics is as follows.

®
S1

. . |s,—s| <eforn=4
52 53

Formal Definition. A sequence of complex numbers {s, } converges to s
if for any € > 0, there is an integer NV > 1 such that |s, — s| < € for all
n>N.

If {s,} converges to s, we write s, — s, or lims, = s. Some examples
of convergent sequences that appear frequently are

1.1 li L _ 0
(1.1) i =0 0P
(1.2) lim |z[® =0, |z| <1,
n—oo
(1.3) lim {n = 1.
n—00

To prove (1.1) formally, we would for a given € > 0 take N to be an integer
satisfying N > 1/¢!/P. Then for n > N we have n? > NP > 1/¢, and
1/n? < e. To prove (1.2) formally, we would take N to be an integer
satisfying N > (loge)/(log|z|). To prove (1.3) formally, we resort to a
trick. Let t,, = {/n — 1. We estimate t,, from the binomial expansion

n—(n?—l—)tﬁ + o+t > n—(%—l)ti.
This yields t2 < 2/(n —1). Thus |t,| = | {/n — 1| < € whenever 2/(n—1) <
g2, that is, for n > 14 2/e2. For the formal definition we can take N to be
any integer satisfying N > 1 4 2/£2.

We give some definitions and state some theorems, without proofs, that
we will be using.

A sequence of complex numbers {s,} is said to be bounded if there is
some number R > 0 such that |s,| < R for all n. In other words, the
sequence is bounded if it is contained in some disk.

n=(1+t,)" = 1+ nt, +

Theorem. A convergent sequence is bounded. Further, if {s,} and {t,}
are sequences of complex numbers such that s, — s and t,, — t, then

(a) sSn + tn, — s + t,

(b) sptn, — st,

(c) sn/tn — s/t, provided that t # 0.



1. Review of Basic Analysis 35

Thus the limit of a sum is the sum of the limits, the limit of a product
is the product of the limits, and the limit of a quotient is the quotient of
the limits, provided that the denominator is not 0.

Example. We can use these rules to evaluate the limit of a rational ex-
pression of the form
3n*+2n—-1 3

lim = —.
n—oo 5n2 —4n + 8 5

As a preliminary trick, we divide numerator and denominator by the lead-
ing power, and rewrite the expression as

3+(2/n) —1/n?

5— (4/n) +(8/n%) "

Since 1/n — 0 and 1/n2 — 0, the sum and product statements show that
the numerator converges to 3 and the denominator converges to 5. By the
quotient statement, the quotient then converges to %

The most useful criteria for convergence of sequences of real and complex
numbers are gathered in the next several theorems. The first criterion is
sometimes called the in-between theorem.

Theorem. Ifr, <s, <t,,andifr, —» L andt, — L, then s, — L.

A sequence of real numbers {s,} is said to be monotone increasing
if 8,41 > sp, for all n, monotone decreasing if s, < s, for all n, and
monotone if it is either monotone increasing or decreasing. The following
criterion is a version of the completeness axiom for the real numbers.

bounded monotone increasing sequence

Theorem. A bounded monotone sequence of real numbers converges.

A sequence {s,} of real numbers can behave rather wildly. It is still
possible to assign an “upper limit” to {s,}, denoted by lim sup s,, which is
the largest possible limit of a subsequence of {s,}. Our working definition
is that limsup s,, is the unique extended real number S, —co < § < +00,
such that if ¢ > S, then s, > t for only finitely many indices n, while if
t < S, then s, > t for infinitely many indices n. It is easy to see that
any such S is unique. The existence of such an S can be deduced from the
preceding theorem. In fact, the existence is equivalent to the completeness
axiom of the real numbers.
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A “lower limit” of the sequence {s,}, denoted by liminfs,, is defined
similarly. It satisfies

liminf s, = —limsup(—sy,).

The sequence {s, } converges if and only if its lim sup and lim inf are finite
and equal.

Example. The sequence {(—1)"}>2, = {+1,—1,+1,-1,...} does not
converge. Its upper and lower limits are

limsup (—1)" = +1, liminf (-1)" = —1.

n—oo n—o0

For complex sequences, the following simple criterion is used very often.

Theorem. A sequence {sy} of complex numbers converges if and only if
the corresponding sequences of real and imaginary parts of the sg’s con-
verge.

We define a sequence of complex numbers {s,} to be a Cauchy se-
quence if the differences s, — s,, tend to 0 as n and m tend to co. In
the language of formal mathematics, this means that for any € > 0, there
exists N > 1 such that |s,, — s,,| < € if m,n > N. The following theorem
is an equivalent form of the completeness axiom. It is important because it
provides a means of determining whether a sequence is convergent without
producing explicitly the limit of the sequence.

Theorem. A sequence of complex numbers converges if and only if it is a
Cauchy sequence.

We say that a complex-valued function f(z) has limit L as z tends
to zp if the values f(z) are near L whenever z is near zg, z # z9. The
formal definition is that f(z) has limit L as z tends to zg if for any € > 0,
there is § > 0 such that |f(z) — L| < € whenever z in the domain of f(z)
satisfies 0 < |z — zg| < 4. In this case we write

lim f(z) = L,

Z—20
or f(z) — L as z — zp. It is implicitly understood that there are points
in the domain of f(z) that are arbitrarily close to zp and different from zp.
The definition can be rephrased in terms of convergent sequences.

Lemma. The complex-valued function f(z) has limit L as z — zo if and
only if f(z,) — L for any sequence {z,} in the domain of f(z) such that

Zn # zg and z, — 2g-

From the theorem on limits, we obtain easily the following.
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Theorem. If a function has a limit at zo, then the function is bounded
near zo. Further, if f(z) — L and g(z) — M as z — zq, then as z — zy we
have

(a) f(z) + g(z) — L + M,

(b) F(2)g(z) — LM,

(c) f(2)/g9(z) — L/M, provided that M # 0.

We say that f(z) is continuous at zg if f(z) — f(20) as z — 2.
A continuous function is a function that is continuous at each point
of its domain. The preceding theorem shows that sums and products of
continuous functions are continuous, and so are quotients, provided that the
denominator is not zero. Further, the composition of continuous functions
is continuous.

Example. Any constant function is continuous. The coordinate function
f(z) = z is continuous. Thus any polynomial function p(z) = a,z" +
---+ a1z + ap is continuous. Any rational function p(z)/q(z) is continuous
wherever the denominator ¢(z) is not zero.

A useful strategy for showing that f(z) is continuous at zg is to obtain
an estimate of the form |f(z) — f(z0)] < Clz — 2| for z near zy. This
guarantees that |f(z) — f(20)| < € whenever |z — z| < €/C, so that we can
take § = £/C in the formal definition of limit.

Example. The estimates
| Re(z — zp)|

[ Im(z — 20)| < [z — 20,

IN

|Z - Z0|7

[1z] = |0l | < [z — 20,
show respectively that the functions Re(z), Im(z), and |z| are continuous.

A subset U of the complex plane is open if whenever z € U, there is a
disk centered at z that is contained in U.

open set: no boundary points closed set: includes boundary

Any open disk {|z—zp| < p} is an open set. The closed disk {|z—zo| < p}
is not an open set, since any open disk centered at a point on the boundary
circle {|z — z9| = p} extends outside the closed disk.

In general, any set described by strict inequalities of continuous functions
is open. For instance, the open upper half-plane is described by the strict
inequality Im(z) > 0, so that it is an open set. Other examples of open sets
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described by strict inequalities are the open sector {§y < argz < 6:}, the
open horizontal strip {—1 < Im z < +1}, the open annulus {r < |z| < s},
and the punctured disk {0 < |z| < r}.

A subset D of the complex plane is a domain if D is open and if any two
points of D can be connected by a broken line segment in D. Open half-
planes, open disks, open sectors, open annuli, and open punctured disks
are all domains. An example of an open set that is not a domain is the
union of the open upper and lower half-planes, U = C\R. It is impossible
to connect a point in the upper half-plane to a point in the lower half-plane
by a broken line segment that does not cross the real line.

= E

domain not a domain

The most important property of domains for us is the following property,
which actually characterizes domains (Exercise 18).

Theorem. If h(z,y) is a continuously differentiable function on a do-
main D such that Vh = 0 on D, then h is constant.

This theorem is easy to justify. Since Vh = 0, the directional derivative
of h(z,y) in any direction is zero. Consequently, h(x,y) is constant on any
straight line segment contained in D, hence on any broken line segment.
Since any two points of D can be joined by a broken line segment in D,
h(zx,y) is constant on D.

A set is convex if whenever two points belong to the set, then the
straight line segment joining the two points is contained in the set. An
open or closed disk is convex, but a punctured disk is not convex.

convex not convex

A set is star-shaped with respect to zg if whenever a point belongs to
the set, then the straight line segment joining zo to the point is contained
in the set. In other words, a set is star-shaped with respect to zg if every
point of the set is visible from zg. Any convex set is star-shaped with
respect to each of its points. The slit plane C\(—o0, 0] is star-shaped with
respect to any point on the positive real axis. However, it is not convex,
and it is not star-shaped with respect to any point not on the real axis.
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e 20

star-shaped with respect to z; but not z; not star-shaped

A star-shaped domain is a domain that is star-shaped with respect to
one of its points. Thus C\(—o0,0] is a star-shaped domain. Any convex
domain is a star-shaped domain. An open annulus is not star-shaped.

A subset E of the complex plane is closed if it contains the limit of every
convergent sequence in E. The closed disk {|z — zo| < r} is a closed set,
since if |s, — 20| <7 and s, — s, then |s — 2| < 7.

Sets of the form {f(z) > ¢} or {f(z) < ¢}, where f(z) is a continuous
real-valued function, are closed. Thus for instance the closed upper half-
plane, consisting of points z such that Re(z) > 0, is a closed set.

The boundary of a set E consists of points z such that every disk
centered at z contains both points in £ and points not in F. Thus a set is
closed if it contains its boundary, and a set is open if it does not include
any of its boundary points. For example, the boundary of the closed disk
{lz — zo| < r} is its boundary circle {|z — 29| = r}, and the boundary of
the open disk {|z — zp| < r} is also the boundary circle.

A subset of the complex plane that is closed and bounded is said to
be compact. A closed disk {|z — z| < r} is compact, as is a closed
interval [a, b] on the real line. We will use the following important property
of compact sets in our discussion of the maximum principle for harmonic
and analytic functions.

Theorem. A continuous real-valued function on a compact set attains its
maximum.

Exercises for I1.1

1. Establish the following:

n 2n? +5n+1
li =1 li =2, > 1
(&) i (©) 2 a1 P
. . 4
i myr=? W lmoy=0 =eC

2. For which values of z is the sequence {2"}32, bounded? For which
values of z does the sequence converge to 07

3. Show that {n™z"} converges only for z = 0.

. N!
4. Show that ]\}}_l;noo m = 1, k > 0.
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d.

10.

11.

12.

II  Analytic Functions

Show that the sequence

bn:1+l+l+---+l—logn, n > 1,
2 3 n
is decreasing, while the sequence a,, = b, —1/n is increasing. Show
that the sequences both converge to the same limit y. Show that
% <v< % Remark. The limit of the sequence is called Euler’s
constant. It is not known whether Euler’s constant is a rational
number or an irrational number.

. For a complex number «, we define the binomial coefficient “a

choose n” by

(- ()t s

Show the following.

(a) For each «, the sequence (Z) is bounded.

(b) (:) — 0 if and only if Rea > —1.

a o'
If 0,1,2,...,th —1.
(c) Ia# e <n+1 n -

(2 )= () rain=o.
(2016

Define zy = 0, and define by induction z,4+; = :rfl + i for n > 0.

Show that , — 3. Hint. Show that the sequence is bounded and

monotone, and that any limit satisfies z = 22 + }1.

(d) If Rea < —1, o # —1, then

(e) If Rea > —1 and « is not an integer, then

for n large.

. Show that if s, — s, then |s,, — s,_1| — 0.

Plot each sequence and determine its lim inf and lim sup.
1
(a) sn =1+ - +(-1)" (c) sp, =sin(nn/4)
(b) s, = (—n)" (d) s, = 2™ (z € R fixed)

At what points are the following functions continuous? Justify your
answer. (a) z, (b) z/|z|, (c) 22/|z|, (d) 2%/|z]3.

At what points does the function Arg:z have a limit? Where is
Argz continuous? Justify your answer.

Let h(z) be the restriction of the function Argz to the lower half-
plane {Im z < 0}. At what points does h(z) have a limit? What is
the limit?
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13.

14.

15.

16.

17.

18.

19.

For which complex values of « does the principal value of z* have
a limit as z tends to 07 Justify your answer.

Let h(t) be a continuous complex-valued function on the unit inter-
val [0, 1], and consider

t—=z

H(z) :/0 ) dt.

Where is H(z) defined? Where is H(z) continuous? Justify your
answer. Hint. Use the fact that if |f(t) —g(t)| <e for 0 <t <1,

then [ |f(t) — g(t)ldt < e.

Which of the following sets are open subsets of C? Which are closed?
Sketch the sets. (a) The punctured plane C\{0}, (b) the exterior
of the open unit disk in the plane, {|z| > 1}, (c) the exterior of the
closed unit disk in the plane, {|z| > 1}, (d) the plane with the open
unit interval removed, C\(0,1), (e) the plane with the closed unit
interval removed, C\[0, 1], (f) the semidisk {|z| < 1, Im(z) > 0}, (g)
the complex plane C.

Show that the slit plane C\(—o0, 0] is star-shaped but not convex.
Show that the slit plane C\[—1,1] is not star-shaped. Show that a
punctured disk is not star-shaped.

Show that a set is convex if and only if it is star-shaped with respect
to each of its points.

Show that the following are equivalent for an open subset U of the
complex plane.

(a) Any two points of U can be joined by a path consisting of
straight line segments parallel to the coordinate axes.

(b) Any continuously differentiable function h(z,y) on U such that
Vh = 0 is constant.

(c) If V and W are disjoint open subsets of U such that U = VUW,
then either U = V or U = W. Remark. In the context of
topological spaces, this latter property is taken as the definition
of connectedness.

Give a proof of the fundamental theorem of algebra along the fol-
lowing lines. Show that if p(z) is a nonconstant polynomial, then
|p(z)| attains its minimum at some point zg € C. Assume that the
minimum is attained at zo = 0, and that p(z) = 1 4+ a2z™ + ---,
where m > 1 and a # 0. Contradict the minimality by showing
that |P(ee?)| < 1 for an appropriate choice of 6.



42 II  Analytic Functions
2. Analytic Functions

If the development in this section has a familiar ring, it should. The basic
definitions and rules for the complex derivative are exactly the same as
those for the usual derivative in elementary calculus. The only difference is
that multiplication and division are now performed with complex numbers
instead of real numbers.

A complex-valued function f(z) is differentiable at z if the difference
quotients

f(2) — f(z0)

(2.1)
Z— 20

d
have a limit as z — 2. The limit is denoted by f'(zo), or by d—];(zg), and
we refer to it as the complex derivative of f(z) at zg. Thus

o F) = f(z0)

z—20 Z— 2

(2.2) Z—Z(ZO) = f'(20) =

Example. A constant function f(z) = ¢ has derivative f’(z9) = 0 at any
point zg. In this case the difference quotients (2.1) are all zero, so that the
limit is also 0.

It is often useful to write the difference quotient (2.1) in the form
f(z0 + Az) — f(z0)
Az ’

so that z — 2 is replaced by Az. The formula for the complex derivative
becomes

(2.3)

, . flzo+ Az) — f(z0)
@ o) = Jm Lt 5T,

Occasionally we use z instead of zj in the expression (2.4).

Example. The power function f(z) = 2™ has derivative f/(z) = mz™"1.

In this case the binomial expansion

(z+A2)™ = 2™ + m2™ Az + Ln—(—n;;l)zm_Q(Az)Z + -+ (Az)™
yields
f(Z+AAZz~f(Z) = mz™ + ————m(ﬂ;_ 1)zm"2Az + -+ (AT,

1

which has limit mz™ ™" as Az — 0.

Example. The function f(z) = Z is not differentiable at any point z. In
this case the difference quotient (2.3) becomes

((z + Az) —2) /Az = Az/Az.
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If Az = ¢ is real, then this difference quotient is equal to 1, whereas if
Az = ie is imaginary, then the difference quotient is equal to —1. Thus the
difference quotients do not have a limit as Az — 0.

The various properties of the complex derivative can be developed in
exactly the same way as the properties of the usual derivative.

Theorem. If f(z) is differentiable at zy, then f(z) is continuous at zg.

This follows from the sum and product rules for limits. We write

(OESLCO) Y

Z— 20

1) = o)+ (

Since the difference quotient tends to f'(zg) as z — zp, and z — zp tends
to 0 as z — zg, the product on the right tends to 0, and consequently,
f(z) — f(20) as z — zp.

The complex derivative satisfies the usual rules for differentiating sums,
products, and quotients. The rules are

(2.5) (cf)(z) = cf'(2),

(2.6) (f +9)(z) = f'(2)+4'(2),

(2.7) (f9)'(z) = f(2)g'(2) + f'(2)9(2),

(28) (f/g)'(z) — g(z)f’(Z) - f(Z)g’(Z) g(z) # 0.

9(2)? ’

Here we are assuming that f(z) and g(z) are differentiable at z, and that
c is any complex constant. The conclusion is that cf(z), f(z) + g(2),
f(2)g(z), and, provided that g(z) # 0, also f(z)/g(z) are all differentiable
at z and satisfy the rules (2.5) to (2.8) listed above. The proofs depend on
the theorems for limits of sums, products, and quotients. For instance, to
establish the product rule (2.7) we begin with the usual trick and rewrite
the difference quotient [(fg)(z + Az) — (fg)(z)]/Az for the product as

o AnZEFADZ06) | SCHAD G,

We now take a limit as Az — 0 and apply the rules for limits of sums and
products, and we obtain (2.7).

The identities (2.5) and (2.6) express the fact that complex differentiation
is a linear operation. Note that (2.5) is a consequence of the product
rule (2.7) and the fact that the derivative of a constant function c is 0.

To establish the identity (2.8), it suffices to establish the simpler identity

(2.9) (1/9)'(2) = —g'(2)/9(2)?,  g(z) #0,
and then to apply the product rule.
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Example. Any polynomial
p(2) = apz” +an_12" '+ +arz+ag
has a complex derivative, which is given by the usual formula
P(2) = naz" '+ (n—1ap_12" 2+ +a.

This follows from the linearity rules (2.5) and (2.6), since z™ is differen-
tiable with derivative mz™~!. Further, any rational function p(z)/q(z) is
differentiable at all points z except for the (finitely many) zeros of g(z).

The chain rule is also valid for the complex derivative. We give a careful
statement and proof.

Theorem (Chain Rule). Suppose that g(z) is differentiable at zy, and
suppose that f(w) is differentiable at wy = g(z9). Then the composition
(f o g)(z) = f(g(2)) is differentiable at zy and

(2.10) (fo9)'(20) = f'(9(20))g(20)-

w=g(2) ¢=fw)

m /'_\
o fw) = fg(z)

A useful mnemonic device for remembering the chain rule is

df  df dw
dz  dw dz’
where we have written w = ¢g(z). Danger! We regard f on the right-hand
side as a function of w, and we regard f on the left-hand side as the function
f(g(z)) of z. The mnemonic device can be justified by the proof, which
involves multiplying and dividing by Aw. The proof goes as follows.
We consider two cases. For the first case, we assume that ¢'(zp) # 0.
Then g(z) # g(z0) for 0 < |z — 29| < €, so we are justified in writing

(2.11) f(g(z) = fla(z0) _ f(g(=)) = F(9(0)) 9(2) — g(20)

z— 2 9(z) — g(z0) z— 2

Since g(z) is differentiable at zp, it is continuous at z, that is, g(z) — g(20)
as z — zg. Consequently,

f(g(2)) — f(9(20))
9(z) — g(z0)

as z — 29. Thus we can pass to the limit in (2.11), and we obtain (2.10).

— f'(9(20))
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For the second case, we assume that ¢'(zp) = 0. Since f(w) is differen-
tiable at wp, the difference quotients (f(w) — f(wp)/(w — wg) are bounded
near wy, say

f(w) — f(wo)

w — Wy

<cC

for some constant C and 0 < |w — wo| < €. Hence |f(g(2)) — f(g(20))| <
C|g(z) — g(z0)| for z near zp, and consequently,

f(g(2)) — f(g(20))

Z—20

9(z) — g(=o)
Z— 2

< |

Since the right-hand side tends to 0 as z — 2o, we obtain (f o g)'(20) = 0.
Thus both sides of (2.10) are 0, and in particular, the identity (2.10) holds.

Example. Suppose f(w) = 1/w, and g(z) = 22 — 1. Then f(g(z)) =
1/(22 —1). Using f'(w) = —1/w? and ¢'(z) = 2z, we obtain from the chain
rule

2z

d 1 1
—_— = —_— — 2 = - — j:l'
dz 22 —1 ( w? wzzg_l)( 2 (22 - 1)’ 27

This is, of course, the same as the result we would have obtained by apply-
ing the quotient rule. More generally, the rule (2.9) follows from the chain
rule and the formula for the derivative for 1/w.

Now we turn to the definition of the class of functions that is the main
subject of complex analysis. As usual, all our functions will be complex-
valued functions defined on a subset of the complex plane.

Definition. A function f(z) is analytic on the open set U if f(z) is
(complex) differentiable at each point of U and the complex derivative f’(z)
is continuous on U.

We have seen that any polynomial in z has a complex derivative at any
point, and the complex derivative is a polynomial, hence continuous. Thus
any polynomial in z is analytic on the entire complex plane. Rational
functions are analytic wherever they are finite.

More generally, the rules established for complex derivatives show that
sums and products of analytic functions are analytic. Quotients of analytic
functions are analytic wherever the denominator does not vanish.

An example of a function that is not analytic is f(z) = Z, which does
not have a complex derivative at any point.

The requirement that f’(z) be continuous is a nuisance to verify. The
student will be happy to learn that this condition is redundant. In Chap-
ter IV we will prove Goursat’s theorem, that if f'(z) exists at each point
of an open set U, then f’(z) is automatically continuous on U. Meanwhile,
the student who is willing to take this theorem on faith need not check the
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continuity of f’(z), though in all cases we will treat, where f’(z) can be
shown to exist, it will also be apparent that f’(z) is continuous.

Exercises for 11.2

1. Find the derivatives of the following functions.
(a) 22 =1 (c) (2—=1)" (e) 1/(z2+3) (g) (az+b)/(cz+d)
(b)z" -1 (d)1/(1—2) (f) 2/(2*—=5) (h) 1/(cz+d)?

2. Show that

1 1-—-2" nz"

14+224+3224+.--+nz""1 = — .
et 1-22 12

3. Show from the definition that the functions x = Rez and y =Im =z
are not complex differentiable at any point.

4. Suppose f(z) = az?+bzz + cz?, where a, b, and c are fixed complex
numbers. By differentiating f(z) by hand, show that f(z) is complex
differentiable at z if and only if bz+2¢cz = 0. Where is f(z) analytic?

5. Show that if f is analytic on D, then g(z) = f(Z) is analytic on the
reflected domain D* = {Z: z € D}, and ¢'(z) = f/(2).

6. Let h(t) be a continuous complex-valued function on the unit inter-
val [0, 1], and define

H(z) = /: A(t) dt, z € C\[0,1].

- Z

Show that H(z) is analytic and compute its derivative. Hint. Dif-
ferentiate by hand; that is, use the defining identity (2.4) of the
complex derivative.

3. The Cauchy-Riemann Equations

Suppose f = u + v is analytic on a domain D. Fix a point z €D. We will
compute the complex derivative

, . flz+Az) - f(2)
fiz) = Alinio Az

in two different ways, first by letting z + Az tend to z along the horizontal
line through z (that is, Az = Az real), then by letting z + Az tend to z
along the vertical line through z (that is, Az = {Ay imaginary). This yields
two expressions for f’(z), which lead to the Cauchy-Riemann equations.
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7+ 1Ay

ZT z=+Ax

Expressing the difference quotient in terms of 4 and v and setting Az =
Az, we obtain

f(z+ Az) — f(2) u(z + Az, y) + w(x + Az, y) — (u(z,y) + w(x,y))
Az Az
_u(z + Az,y) —u(z,y) N Z,v(:r + Az, y) — v(z,y)
B Az Az )

Passing to the limit, we see that the z-derivatives of u and v exist, and

(3.1) fl(z) = %(r,y) + i%(m,y), z=x+1y.

Since f’(z) is continuous, (3.1) shows that the z-derivatives of u and v are
continuous.

Next we set Az = {Ay, and we play the same game. The difference
quotient becomes

flz+1Ay) — f(2)  u(z,y+ Ay) +wv(z,y + Ay) — (u(z,y) +w(z,y))
1Ay N iAy
_ v@yt+ Ay —v(zy)  ulzy+Ay) —u(zy)
B Ay Ay '

Passing to the limit as before, we see that the y-derivatives of v and v are
continuous and satisfy

0
(3.2) fa) = @) - iZ—Z(z,w, r=ctiy.

Now we have two expressions, (3.1) and (3.2), for f'(z). We equate their
real and imaginary parts, and we obtain
(3.3) ou _Ov  Ou _ Ov
ox oy oy ox
These equations are called the Cauchy-Riemann equations for v and v.
We have proved half of the following theorem.

Theorem. Let f = u + iv be defined on a domain D in the complex
plane, where u and v are real-valued. Then f(z) is analytic on D if and
only if u(z,y) and v(z,y) have continuous first-order partial derivatives
that satisfy the Cauchy-Riemann equations (3.3).
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It remains to be shown that if the partial derivatives of © and v exist, are
continuous, and satisfy the Cauchy-Riemann equations, then f = u + v is
analytic. For this, we use Taylor’s theorem. Fix z € D. Taylor’s theorem
with remainder provides an approximation

0
(e + Aa,y + Ay) = uay) + 51 (2.9)Az + 3 2.9)Ay + R(Az, Ay),

where R(Ax, Ay)/|Az| has limit 0 as Az approaches 0. (The continuity of

the first-order partial derivatives of u must be used to obtain the estimate
for R.) Similarly,

0
v(z + Az, y + Ay) = v(z,y) + 8—;(1‘, y)Azx + %(l‘, y)Ay + S(Azx, Ay),
where S(Az, Ay)/|Az| — 0 as Az — 0. Thus

) B
flz+Az) = f(z) + 8—:;(1’, Y)AZ + a_Z(‘”’ v)Ay + R(Az)

.O0v Ov :
+ za—x(x, y)AzT + 15;(:1:, y)Ay +1S(Az).

If we use the Cauchy-Riemann equations to replace the y-derivatives by
z-derivatives, and we use Az + t1Ay = Az, a minor miracle occurs. The
identity becomes

flz+ Az) = f(2) + (a—(m y) + z (1‘ y)) Az + R(Az) +1S(Az).
Thus

Az) — ou 1S(A
(R CRS CINE TR TR CSES ]

which tends to

Ou (:r :u)+Za (z,y)

as Az tends to 0. This shows that f/(z) exists and is given by (3.1), so
that f’(z) is continuous, and thus f(z) is analytic. Both directions of the
theorem are now established.

Example. The functions u(z,y) = = and v(z,y) = y, corresponding to
z = x + 1y, satisfy the Cauchy-Riemann equations, since

ou { - ov Oou 0— ov
or oy’ oy Oz’
The functions u(z,y) = = and v(x,y) = —y, corresponding to z = x — 1y,

do not satisfy the Cauchy-Riemann equations, since
0 ov
g |

e - = = -1
or ’ Oy
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We may use the Cauchy-Riemann equations to show that the function e?
is analytic and satisfies

d €

dz
In this case, u(z,y) = e*cosy and v(z,y) = e*siny. We check that the
Cauchy-Riemann equations hold:

Z = e~

au a ex cos 61‘ cos 8 T Sln a’U
_— = — —_ = — e = —
ox 835 Y y o Yy 8y
Qu _ 2 efcosy = —e'siny = 9 eSsiny = _ov
oy Oy 7o Y7 "o T Tor
Thus f(z) = e? is analytic, and (3.1) yields
0
fl(z):%+i—a—z:ezcosy+iezsiny:ez.

From the chain rule we deduce further that any complex exponential func-
tion of the form e®*?, where a is a complex constant, is analytic and satisfies
d
¢
Linear combinations, such as sin z and cos z, of complex exponential func-
tions are also analytic, and the usual formulae for the derivatives hold:

9% = qge”.

d .

—sinz = cosz,
dz

d i
—cosz = —sinz,
dz

—sinhz = coshz,
dz

-——coshz = sinhz.
dz

To verify the formula for the derivative of sin z, for instance, we compute

d . d e —e % e + je" "2
— sinz = — , = _ = COSz.
dz dz 2 27
Two important consequences of the Cauchy-Riemann equations and the

equations for f'(z) are as follows.

Theorem. If f(z) is analytic on a domain D, and if f’'(z) = 0 on D, then
f(2) is constant.

In this case, the equations (3.1) and (3.2) yield

o _ o _ o
oz 9y  Oxr By
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Since D is a domain, the theorem in Section 1 shows that v and v are
constant on D. Thus f = u + ¢v is constant.

Theorem. If f(z) is analytic and real-valued on a domain D, then f(z)
is constant.

In this case, v = 0 on D, and the Cauchy-Riemann equations become

ou ou
—_— posng 0 —_— = .
ox ’ oy 0

Since D is a domain, u is constant in D.

Exercises for 11.3

1. Find the derivatives of the following functions.
sin z sinh z

b) tanh z =
CcoS 2 (b) tanh z cosh z

(a) tanz =

(c) secz =1/cosz

2. Show that u = sinz sinhy and v = cosz cosh y satisfy the Cauchy-
Riemann equations. Do you recognize the analytic function f =
u +1v? (Determine its complex form.)

3. Show that if f and f are both analytic on a domain D, then f is
constant.

4. Show that if f is analytic on a domain D, and if |f| is constant,
then f is constant. Hint. Write f = |f|?/f.

5. If f =u + 4v is analytic, then |Vu| = |Vu| = |f'].
6. If f = u + iv is analytic on D, then Vv is obtained by rotating Vu

by 90°. In particular, Vu and Vv are orthogonal.

\VAY

T
2 Ju

7. Sketch the vector fields Vu and Vv for the following functions f =
u +1iv. (a) iz, (b) 22, (c) 1/=.

8. Derive the polar form of the Cauchy-Riemann equations for u and v:

ou 1 0v ou Oov

— = -, — = —r—.

or r 00 0o or
Check that for any integer m, the functions u(re®) = r™ cos(m#)
and v(re*®) = r™ sin(m#) satisfy the Cauchy-Riemann equations.
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4. Inverse Mappings and the Jacobian
Let f = u + iv be analytic on a domain D. We may regard D as a domain

in the Euclidean plane R? and f as a map from D to R? with components
(u(zx,y),v(z,y)). The Jacobian matrix of this map is

ou ou
_ or Oy
S TR
or Oy
and the determinant of the Jacobian matrix is
oudv Oudv
detJs = —— — ——.
T Broy  Byor

If we use the Cauchy-Riemann equations to replace the y-derivatives by
z-derivatives, we obtain

ou\ 2 ov\ 2

By equation (3.2), this is equal to |f’(z)|?>. We have shown the following.

ou . Ov 2

9z Yoz

Theorem. If f(z) is analytic, then its Jacobian matrix J; (as a map
from R? to R?) has determinant

det Jp(z) = |f'(2)%

Now we can invoke the inverse function theorem from multivariable cal-
culus, and this leads to the following.

Theorem. Suppose f(z) is analytic on a domain D, zy € D, and f'(z0) #
0. Then there is a (small) disk U C D containing zy such that f(z) is one-
to-one on U, the image V = f(U) of U is open, and the inverse function

f1.v—vu
is analytic and satisfies
(4.1) (F(f(2) = 1/f'(2), z€U.
w=f(2)
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All of the assertions of this theorem are consequences of the inverse func-
tion theorem, except for the assertions concerning the analyticity of f~1.
To check that f~! is analytic, we write ¢ = f~! on U and differentiate by
hand. Fix w,w; € U with w # w,, and set z = g(w), 23 = g(w;1). Then
z # 21, f(2) =w, f(z1) = w;, and we have

o) o) _ _zoa /(10 fa)),

w—w  fG2)—fz1) z— 2

As w tends to w,, z tends to z1, and the right-hand side tends to 1/f'(21).
Thus g is differentiable at w1, and ¢’(w;) = 1/f’(z1), which is the required
identity (4.1) at z;. Since 1/f’(z) is continuous, (f~!)’ is continuous, and
thus f~! is analytic.

If we write w = g(z), the identity (4.1) becomes

dz_l
il
dz

which is the usual mnemonic device for remembering the derivative of the
inverse function. The device is justified by the proof. Danger! Take care
to evaluate the derivatives at the right points.

Once we know that f~! is analytic, we can easily derive the formula (4.1)
for the derivative from the chain rule. Since f~1(f(z)) = z, the chain rule

yields (f71)(f(2))f'(z) = 1, which is (4.1).

Example. The principal logarithm function w = Logz is a continuous
inverse for z = e for —m < argw < 7. Since e¥ is analytic and (e¥)’ # 0,
the preceding theorem applies, with z and w interchanged. From that
theorem we conclude that Log z is analytic. If we use the chain rule to
differentiate

s = eLogz,
we obtain

d d

_ _Log=z .
1 = 8 d—z-(Logz) = za(Logz).

Thus

d 1
(4.2) —Logz = —.

dz z

Any other continuous branch of the logarithm differs from the principal
branch by a constant, hence has the same derivative.

Example. Any continuous branch of /z is analytic, and

d
(4.3) Eﬁ = 5%7
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where we use the same branch of \/z on both sides of the identity. To see
this, note first that no continuous branch of 1/z can be defined on a domain
containing 0, so that z # 0 in (4.3). Each branch w = /z satisfies w? = 2.
Since (w?)’ = 2w is not zero for w # 0, the continuous inverse branch /z
is analytic. Differentiating w? = z, we obtain

dw dw 1
Qw— = 1 = - -
wdz ’ dz 2w’

which is (4.3).

We will give in Section VIII.4 another proof of the existence and ana-
lyticity of the inverse of an analytic function, which does not depend on
the inverse function theorem from calculus but rather on residue theory.

That proof will provide an explicit integral representation formula for the
inverse function.

Exercises for 11.4

1. Sketch the gradient vector fields Vu and Vv for (a) u + v = €7, (b)
u +1v = Log 2.

2. Let a be a complex number, a # 0, and let f(z) be an analytic
branch of 2% on C\(—o00,0]. Show that f'(z) = af(z)/z. (Thus
f'(z) = az%~!, where we pick the branch of 2%~! that corresponds
to the original branch of z* divided by z.)

3. Consider the branch of f(z) = \/z(1 — z) on C\[0, 1] that has posi-
tive imaginary part at z = 2. What is f'(z)? Be sure to specify the
branch of the expression for f'(z).

4. Recall that the principal branch of the inverse tangent function was

defined on the complex plane with two slits on the imaginary axis
by

14122
1—1z

1 i
Tan"'z = 5 Log ( ) ) z ¢ (—ioo, —i] U [i,100).

i
Find the derivative of Tan~!z. Find the derivative of tan=!z for
any analytic branch of the function defined on a domain D.

5. Recall that cos™!(z) = —ilog[z &+ V22 —1]. Suppose g(z) is an
analytic branch of cos™!(z), defined on a domain D. Find g¢(z).
Do different branches of cos™'(z) have the same derivative?

6. Suppose h(z) is an analytic branch of sin™'(z), defined on a do-
main D. Find h/(z). Do different branches of sin~'(z) have the
same derivative?

7. Let f(z) be a bounded analytic function, defined on a bounded
domain D in the complex plane, and suppose that f(z) is one-to-
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one. Show that the area of f(D) is given by

Area (f(D)) = / [ \rG)Pazay.

8. Sketch the image of the circle {|z—1| <1} under the map w = 22.
Compute the area of the image.

9. Compute
[ ir@raa,
D

for f(z) = 22 and D the open unit disk {|z| < 1}. Interpret your
answer in terms of areas.

10. For smooth functions g and A defined on a bounded domain U, we
define the Dirichlet form Dy (g, h) by

B 0g Oh ag oh
Dy(g,h) = // !:(?:L‘ o7 By ay] dz dy.

Show that if z = f(() is a one-to-one analytic function from the
bounded domain V onto U, then

Dy(g,h) = Dy(go f,hof).

Remark. This shows that the Dirichlet form is a “conformal invari-
ant.”

5. Harmonic Functions

The equation

Pu L Fu_g
oz? ox2
is called Laplace’s equation. The operator
o2 02
A = 8—1% +-o 4 51%
is called the Laplacian. In terms of this operator, Laplace’s equation
becomes simply Au = 0. Smooth functions u(zy,...,z,) that satisfy

Laplace’s equation are called harmonic functions. Laplace’s equation
is one of the most important partial differential equations of mathematical
physics. Some indication of the applications will be given in Chapter III.
We will be concerned with harmonic functions of two variables, that is,
solutions of
8%u  O%u

Ay=—=+—==0.
U 3:£2+8y2 0
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We say that a function u(z, y) is harmonic if all its first- and second-order
partial derivatives exist and are continuous and satisfy Laplace’s equation.
In the case of functions of two variables, there is an intimate connection
between analytic functions and harmonic functions.

Theorem. If f = u + v is analytic, and the functions u and v have
continuous second-order partial derivatives, then u and v are harmonic.

The second hypothesis of the theorem is redundant. We will show in
Chapter IV that an analytic function has continuous partial derivatives of
all orders.

The harmonicity of v and v is a simple consequence of the Cauchy-
Riemann equations,

5.1) Qu _ Qv

. or Oy’

5.2) Ou _ _Ov

(5- oy Oz’

Using these, we obtain
Pu_ oo oov _ o
o2 ~ 0z dy  Oyor = Oy?’

which shows that u is harmonic. The verification that v is harmonic is the
same.

If » is harmonic on a domain D, and v is a harmonic function such that
u + v is analytic, we say that v is a harmonic conjugate of u. The
harmonic conjugate v is unique, up to adding a constant. Indeed, if vg is
another harmonic conjugate for u, so that u + ivg is also analytic, then the
difference i(v — vp) is analytic, and v — vy is a real-valued analytic function,
hence constant on D.

Exercise. Show that u(z,y) = zy is harmonic, and find a harmonic con-
jugate for u.
Solution. We have

32 32
302 TV = 0 = o2 Y

so that zy is harmonic. To find a harmonic conjugate v, we solve the
Cauchy-Riemann equations. From (5.1) we have

Ou  Ov

or 7~ oy’
Thus

Way) = L+ hiz),
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where h(z) depends only on x and not on y. Equation (5.2) becomes
z = —h/(z), which has solution h(z) = —z2/2 + C. Thus

2 2
Yy T
v(z,y) = '2— - ?‘FC,

where C is a constant. The analytic function f = u + iv is given by

f(z) = —iz—;—i-iC.

The method used above actually shows that any harmonic function on a
rectangle with sides parallel to the axes has a harmonic conjugate on the
rectangle. Indeed, let u(z,y) be harmonic on such a rectangle D, and let
(z90,y0) be any fixed point of D. If we integrate the first Cauchy-Riemann
equation (5.1) along a vertical segment from yg to y, with z fixed, we obtain

v(z,y) = /'y Z—Z(x,t) dt + h(z),
y

0

where h(z) is the constant of integration with respect to y. Though h(x)
does not depend on y, it may depend on z. The second Cauchy-Riemann
equation (5.2) then becomes

ou 0 [You ,
a—y(:r,y) = o, 55 (& t)dt — hi(z).

If we differentiate under the integral sign (as we may) and use Laplace’s
equation, we obtain

Oou Y 5%u , Y 5%y ,

ou ou ,

Thus we obtain

This has the solution

T ou

h(z) = —/ —(s,y0)ds + C,
o ay

where C is a genuine constant. Thus we see that a harmonic conjugate

v(z,y) for u(z,y) is given explicitly by

Y ou T ou
5.3 = —(z,t)dt — —(s,y0)d C.
63 vew = [ geod - [ Do+
The formula (5.3) is also valid if D is the entire complex plane, or if D is
an open disk with center (zg,y0)- Note that if we specify v(zg,y0) = O,
then C = 0, and the solution is unique.
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xy

]

(xp» Yo) (% ¥9)

We summarize in the following theorem.

Theorem. Let D be an open disk, or an open rectangle with sides parallel
to the axes, and let u(x,y) be a harmonic function on D. Then there is
a harmonic function v(x,y) on D such that u + iv is analytic on D. The
harmonic conjugate v is unique, up to adding a constant.

We will see in Chapter III that this theorem holds in star-shaped do-
mains. However, the theorem fails in annuli and in the punctured plane
(Exercise 7). Roughly speaking, the theorem holds only in domains that
have no “holes.” Such domains are called “simply connected domains.”
They will be discussed in Chapter VIII.

Exercises for I1.5

1. Show that the following functions are harmonic, and find harmonic
conjugates:
(a) 22 — 92 (c) sinhzsiny (e) tan™ 1(y/ac), z>0
(b) zy+3z%y —y® (d) e ¥ cos(2zy) (f) z/(z* +¢?)

2. Show that if v is a harmonic conjugate for u, then —u is a harmonic
conjugate for v.

3. Define u(z) = Im(1/22) for z # 0, and set u(0) = 0.
(a) Show that all partial derivatives of u with respect to z exist at
all points of the plane C, as do all partial derivative of u with

respect to y.
0? 9%u
(b) Show that 8_15 + 57 =0

(c) Show that u is not harmonic on C.

2y
how th
(d) Show that 520y

4. Show that if h(z) is a complex-valued harmonic function (solution
of Laplace’s equation) such that zh(z) is also harmonic, then h(z)
is analytic.

does not exist at (0,0).

5. Show that Laplace’s equation in polar coordinates is

Oy 10u 1 0%u

o2 " rar rie O
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6. Show using Laplace’s equation in polar coordinates that log|z| is
harmonic on the punctured plane C\{0}.

7. Show that log |z| has no conjugate harmonic function on the punc-
tured plane C\{0}, though it does have a conjugate harmonic func-
tion on the slit plane C\(—o0, 0].

8. Show using Laplace’s equation in polar coordinates that u(re®) =
flogr is harmonic. Use the polar form of the Cauchy-Riemann
equations (Exercise 3.8) to find a harmonic conjugate v for u. What

is the analytic function u + iv?

6. Conformal Mappings

Let v(t) = z(t) + iy(t), 0 < t < 1, be a smooth parameterized curve

terminating at zg = y(0). We refer to

() — 7(0)
t

Y(0) = lim — 2/(0) + iy (0)
as the tangent vector to the curve y at zy. It is the complex representation
of the usual tangent vector. We define the angle between two curves

at zo to be the angle between their tangent vectors at zp.

Theorem. If+(t),0 <t < 1, is a smooth parameterized curve terminating
at zo = v(0), and f(z) is analytic at zy, then the tangent to the curve

f(~(t)) terminating at f(zo) is

(6.1) (fov)(0) = f(20)7'(0).
¥'(0)
w =f(2)
(0 T T wo = f(z0)
z20=7(0)

(fo'(©0)
f(y@®)

The proof is a close relative of the proof of the chain rule for the compo-
sition of analytic functions (Section 2). If 4'(0) # 0, then ~(t) # v(0) for t
near 0, t # 0, so we may write

fO@) - f((0)) _ fOr(®) = fF(+(0)) () —~(0)
t 7(t) —(0) t
and pass to the limit, to obtain the formula (6.1). If 4'(0) = 0, then

proceeding as in Section 2, we obtain (fo+)’(0) = 0, and again the formula
holds.
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We may think of the tangent vector as a vector in the plane with tail
at zg. Composing a parameterized curve with f(z) then has the effect upon
the tangent vector of multiplying it by f'(z¢) (complex multiplication) and
moving the tail to wo = f(20). If the tangent vector is represented by
z — 29, then the tangent to the image curve is represented by w — f(zg9) =
f'(20)(z — z9). As far as the tangent vector at zg is concerned, the effect
of composing with f(z) is the same as the effect of composing with the
function f(z9)+ f'(z0)(z—z0), which is the first-order Taylor approximation
to f(z) at zp. The remainder term R(z) in the Taylor approximation
satisfies R(z)/(z — z9) — 0 as z — zp, so that R(z) has no effect on
tangent vectors.

A function is conformal if it preserves angles. More precisely, we say
that a smooth complex-valued function g(z) is conformal at zj if whenever
vo and 7y; are two curves terminating at zy with nonzero tangents, then the
curves g op and g o-y; have nonzero tangents at g(zo) and the angle from
(g °70)"(20) to (g om1)'(20) is the same as the angle from v)(zo) to ¥;(z0)-
A conformal mapping of one domain D onto another V is a continuously
differentiable function that is conformal at each point of D and that maps D
one-to-one onto V.

fom

72 w =f(2) Jeom

20 M
W
0

The translation f(z) = z + b and the complex multiplication g(z) = az,
where a # 0, evidently preserve angles, hence are conformal everywhere.
They are conformal mappings of the complex plane onto itself. On the
other hand, the function aZz reverses angles and orientation, so it is not
conformal. For n > 1, the function 2™ multiplies angles at the origin by n,
so it is not conformal at z = 0. The following theorem shows that 2™ is
conformal at any point z other than 0.

Theorem. If f(z) is analytic at z9 and f’(zo) # 0, then f(z) is conformal
at 20-

Let 79 and 4; be two curves terminating at zp with nonzero tangents.
By the preceding theorem, the tangents to the curves g oy and go~; are
obtained by multiplying the respective tangents to 7o and v1 by f'(2o)-
Thus the arguments of both tangents are increased by the same angle,
namely the argument of f’(zg). Consequently, the angle between them is
preserved.
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There is a converse to this theorem, to the effect that conformal map-
pings are analytic. Though the result is elementary, we postpone it to
Section IV.8. (But see Exercise 9.)

Example. The function w = 22 maps the right half-plane {Re z > 0} con-
formally onto the slit plane C\(—o0,0]. For any fixed 6y, 0 < 8y < 7/2, it
maps the sector {|argz| < 6y} conformally onto the sector {|argz| < 26y}
of twice the aperture.

Example. Fix 6y, 0 < g < 7. If 0 < a < 7/, the function z* maps
the sector {|argz| < 6y} conformally onto the sector {|argz| < afp}. In
particular, the function z7/20 maps the sector {| arg z| < 6y} conformally
onto the right half-plane.

w= Z1r/280

™\2

Example. The exponential function e* is conformal at each point z € C,
since its derivative does not vanish at z. Its image is the punctured plane
C\{0}. However, it is not a conformal mapping of the plane onto the
punctured plane, since it is not one-to-one. Its restriction to the horizontal
strip {|Im z| < 7} is a conformal mapping of the strip onto the slit plane

C\ (—00,0].

Example. The principal branch Logz of the logarithm is a conformal
mapping of the slit plane C\(—o0, 0] onto the horizontal strip {| Im w| < 7}.
See the figure in Section 1.6.
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Any conformal mapping carries orthogonal curves to orthogonal curves,
and it carries orthogonal families of curves to orthogonal families of curves.
In the case of the exponential function e*, the orthogonal grid consisting
of horizontal and vertical lines is mapped to an orthogonal grid consisting
of rays emanating from the origin and circles centered at the origin.

Something similar happens for any nonconstant analytic function f =
u + 7v on a domain D. Fix a point zy where f’(z9) # 0, and consider
the two curves {u(z) = u(20)} and {v(z) = wv(z0)}, which meet at z.
The function f(z) is one-to-one near zg, it maps the part of the level set
{u(z) = u(z0)} near zp to a vertical line segment through f(z), and it
maps the part of the level set {v(z) = v(zp)} near zg to a horizontal line
segment through f(zp). Since these line segments are orthogonal at f(z),
the level sets of u and v are orthogonal at zg. Thus the two families of
curves {u = constant} and {v = constant} are orthogonal except at points
where f'(z0) = 0.

Example. For f(z) = 22 = 22 — y? + 2izy, the families of curves u = con-
stant and v = constant form two families of hyperbolas that are orthogonal
except at the origin.

u = constant

v = constant

Exercises for 11.6

1. Sketch the families of level curves of u and v for the following func-

tions f = u + . (a) f(2) = 1/z, (b) f(z) = 1/22, (c) f(z) = 2°.

Determine where f(z) is conformal and where it is not conformal.

2. Sketch the families of level curves of u and v for f(z) = Logz =
u + 7v. Relate your sketch to one of the figures in this section.

3. Sketch the families of level curves of u and v for the functions f =
u+iv given by (a) f(z) = e?, (b) f(z) = e**, where a is complex.
Determine where f(z) is conformal and where it is not conformal.
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4. Find a conformal map of the horizontal strip {—A < Imz < A}

onto the right half-plane {Rew > 0}. Hint. Recall the discussion of
the exponential function, or refer to the preceding problem.

. Find a conformal map of the wedge {—B < argz < B} onto the

right half-plane {Rew > 0}. Assume 0 < B < 7.

. Determine where the function f(z) = z+1/z is conformal and where

it is not conformal. Show that for each w, there are at most two
values z for which f(z) = w. Show that if » > 1, f(z) maps the circle
{|z| = r} onto an ellipse, and that f(z) maps the circle {|z| =1/r}
onto the same ellipse. Show that f(z) is one-to-one on the exterior
domain D = {|z| > 1}. Determine the image of D under f(z).
Sketch the images under f(z) of the circles {|z| = r} for r > 1, and
sketch also the images of the parts of the rays {argz = §} lying
in D.

. For the function f(z) = z + 1/z = u + v, sketch the families of

level curves of u and v. Determine the images under f(z) of the top
half of the unit disk, the bottom half of the unit disk, the part of
the upper half-plane outside the unit disk, and the part of the lower
half-plane outside the unit disk. Hint. Start by locating the images
of the curves where u = 0, where v = 0, and where v = 1. Note
that the level curves are symmetric with respect to the real and
imaginary axes, and they are invariant under the inversion z — 1/z
in the unit circle.

. Consider f(z) = z + €*®/z, where 0 < a < 7. Determine where

f(2) is conformal and where it is not conformal. Sketch the images
under f(z) of the unit circle {|z|] = 1} and the intervals (—oo, —1]
and [+1, +00) on the real axis. Show that w = f(z) maps {|z| > 1}
conformally onto the complement of a slit in the w-plane. Sketch
roughly the images of the segments of rays outside the unit circle
{argz = B, |z| > 1} under f(z). At what angles do they meet the
slit, and at what angles do they approach co?

. Let f = u+1iv be a continuously differentiable complex-valued func-

tion on a domain D such that the Jacobian matrix of f does not
vanish at any point of D. Show that if f maps orthogonal curves to
orthogonal curves, then either f or f is analytic, with nonvanishing
derivative.
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7. Fractional Linear Transformations

A fractional linear transformation is a function of the form

az+b
71 w = zZ = s
(7.1) ) = E—
where a, b, ¢, d are complex constants satisfying ad — bc # 0. Fractional
linear transformations are also called Mobius transformations. Since

, _ad—bc
P = vap

the condition ad — be # 0 simply guarantees that f(z) is not constant.

If we multiply each of the parameters a,b,c,d in (7.1) by the same
nonzero constant, we obtain the same function. Thus different choices
of the parameters may lead to the same fractional linear transformation.

Example. A function of the form f(z) = az + b, where a # 0, is called an
affine transformation. These are the fractional linear transformations
of the form (7.1) with ¢ = 0. Special cases are the translations z — z +b
and the dilations z — az.

Example. The fractional linear transformation f(z) = 1/z is called an
inversion.

It is convenient to regard a fractional linear transformation as a map
from the extended complex plane C* = CU {00} to itself. If f(z) is affine,
we define f(o0) = oo. Otherwise, f(z) has the form (7.1) where ¢ # 0, and
we define f(—d/c) = oo and

flos) = lim 1) = lim S =

a
o

Thus translations and dilations map oo to oo, while the inversion z — 1/z
interchanges 0 and oc.

The inverse of a fractional linear transformation is again a fractional
linear transformation. To see this, we solve (7.1) for z, to obtain

—dw+b

z = ——.
cw —a

The condition on the coefficients is satisfied, since (—d)(—a)—bc = ad—bc #
0, or alternatively, since the function z = z(w) is not constant. This shows
that each fractional linear transformation is a one-to-one function from the
extended complex plane onto itself.

The composition of two fractional linear transformations is again a frac-
tional linear transformation. To see this, suppose f(z) = (az + b)/cz + d)

and g(z) = (az + B)/(vz + d), and compute

_a((ez+B)/(vz+8))+b  (aa+by)z+aB+bd
foz) = c((az+B)/(vz+98))+d  (ca+dy)z+cB8+dd
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Since the composition f o g cannot be constant, the condition on the pa-
rameters is met, and f o g is a fractional linear transformation.
Note that the composition corresponds to matrix multiplication,

a b\(a B\ _ [ac+by aB+bd
c d v 6)  \Nea+dy cB8+dd)°

The condition ad — bc # 0 on the parameters is simply the condition that
the matrix associated with the fractional linear transformation has nonzero
determinant, that is, that the matrix is invertible.

The fact that matrix multiplication corresponds to composition can be
reformulated in the language of group theory. If we assign to each 2 x 2
invertible matrix the corresponding fractional linear transformation, we
obtain what is called a “group homomorphism,” from the group of 2 x 2
invertible matrices with complex entries onto the group of fractional linear
transformations with operation composition.

A fractional linear transformation depends on four complex parameters.
One of these can be adjusted without changing the transformation, for
instance by multiplying all the parameters by the same nonzero constant.
That leaves three parameters to be specified. The next theorem shows that
there are three independent complex parameters that describe fractional
linear transformations uniquely, namely, the images of any three prescribed
points.

Theorem. Given any three distinct points zg, z1, z2 in the extended com-
plex plane, and given any three distinct values wg, w,, ws in the extended
complex plane, there is a unique fractional linear transformation w = w(z)
such that w(zp) = wop, w(z1) = w1, and w(zz) = wa.

To establish the existence assertion, it suffices to show that any three
distinct points can be mapped by a fractional linear transformation to 0,
1, and oco. Indeed, if f maps zq, z1, 2o respectively to 0,1, 00, and g maps
wo, Wy, wo respectively to 0, 1, oo, then the composition g~ !of, of f followed
by the inverse of g, maps zg, 21, z2 to wg, wy, wo. If now none of the points
20, 21, 22 is 00, a transformation mapping them to 0, 1, co is given explicitly
by

(7.2) w = f(z) =

If one of the z;’s is 0o, we define f(z) by sending that z; to oo in the above
formula. For instance, if zg = oo, we rewrite the right-hand side of (7.2) as

Z—20 21 — 22

Z2— 29 21 — 20

(Z/Z())—]. Z1 — 292
z2—z29 (z1/20) —1

and take a limit as zg — o0, to obtain

w = f(z) =

21 — 22

Z—ZQ'
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This maps oo, 21, 22 to 0, 1, co. There are similar formulae for the cases
z1 = 00 and zo = oco.

For the uniqueness, suppose first that f(z) is a fractional linear trans-
formation that fixes 0, 1, and oco. Since f(oc0) = 00, f(z) = az + b for some
a # 0. From f(0) = 0 we obtain b = 0, and from f(1) = 1 we obtain a = 1.
Thus f(z) = z is the identity transformation.

Now suppose that g(z) and h(z) are both fractional linear transforma-
tions mapping the z;’s to the respective w;’s. Let k(z) map the z;’s respec-
tively to 0,1,00. Then f = koh ™ logok ™' maps0to 0, 1 to 1, and oo to co.
Hence f(z) = z is the identity, and g = hok™lo fok=hok lok = h.
This establishes the uniqueness assertion of the theorem.

Exercise. Find the fractional linear transformation mapping —1 to 0, oo
to 1, and i to oo.

Solution. We could use (7.2) and send z; to co. However, it is easier
to proceed directly. Since w(i) = oo, we place z — i in the denominator,
and since w(—1) = 0, we place z + 1 in the numerator, to obtain w(z) =
a(z+1)/(z —i). Since w(z) — 1 as z — 0o, we obtain a = 1, and hence

w(z) = (2 +1)/(z —1).

Theorem. Every fractional linear transformation is a composition of di-
lations, translations, and inversions.

A fractional linear transformation mapping oo to co has the form w =
az + b where a # 0. This is the composition of the translation z — z +b/a
and the dilation z — az:

z — z+bla — a(z+b/a) = az+b.

If w(oo) is finite, then w has the form (7.1) where ¢ # 0. In this case we
may divide each of the parameter values by ¢ and assume that ¢ = 1. Then
w(z) = (az + b)/(z + d). Now we conjure up by magic the identity

az+b b—ad
wie) = 253 Tt T
This expression allows us to represent w(z) as
1 b—ad b—ad

z +d — a4 —,
2 H z+d ~ z+d z+d

and consequently, w(z) is a composition of a translation, an inversion, a
dilation, and a translation.

Theorem. A fractional linear transformation maps circles in the extended
complex plane to circles.

It suffices to establish the theorem for translations, dilations, and inver-
sions, since every fractional linear transformation is a composition of these.
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It is clear (or it should be) that translations and dilations map circles to
circles. Thus it suffices to check that the inversion w = 1/z maps circles to
circles.

Consider first a circle that does not pass through co. It has an equation
of the form |z — a|? = r?, where a is its center and r its radius. The
image of the circle under the inversion w = 1/z consists of points satisfying
|1 — aw|? = r2|w|?, that is,

0 = 1—aw]®—r’lw® = (1-aw) (I -aw) — r’lw|?
= (la* =) |w|* — aw — @@ + 1.
Set w = u + tv where u and v are real. The equation assumes the form
(laf* =r?) (v +v*) + Au+ Bv+1 = 0,

where A and B are real constants. If r = |a|, the equation represents a
straight line in the plane, which is a circle through co. If 7 # |a/|, this is a
quadratic equation in v and v of the form met in Section 1.3. It has more
than one solution, so the solutions form a circle. (To obtain the center and
radius, complete the square.)

Next consider a circle passing through oo, that is, a straight line. It has
an equation of the form Cx + Dy = E. A calculation similar to the one
given above shows that the image is a circle if E # 0 and a straight line if
E =0 (Exercise 6).

Exercise. Find the equation of the fractional linear transformation map-
ping 0 to —1, 7 to 0, and oo to 1.

Solution. Since 1 — 0, we can normalize a to be 1 and write the fractional
linear transformation in the form w = (2 —i)/(cz + d). The condition
0 — —1 yields —i/d = —1, and so d = 7. Finally, the condition co — 1
yields 1/¢ =1, and so ¢ = 1. Thus w = (z — i) /(z + i).

Exercise. Determine the images of each of the following sets under the
above fractional linear transformation: (a) the imaginary axis, (b) the right
half-plane, (c) the real axis, (d) the upper half-plane, (e) the horizontal line
through 7. Sketch the images of horizontal lines and of vertical lines under
the transformation.

Solution. We will solve this exercise without referring to the explicit for-
mula for the transformation. We use two facts. First, to determine the
image of a circle under a fractional linear transformation, it suffices to
determine the images of three points on the circle. Since three points de-
termine a circle, the image of the circle is then the circle passing through
the three image points. Second, fractional linear transformations map or-
thogonal circles to orthogonal circles, since they are conformal.

(a) The three points 0, i, co lie on the circle corresponding to the imagi-
nary axis in the extended complex plane. The image of the imaginary axis
is then the circle through the three image points —1,0, +1, which is the
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real line.

(b) The ordered triple 0,4, 00 is mapped to the ordered triple —1,0,1, so
the image w moves forward on the real line as z moves upwards on the
imaginary axis. Since orientations are preserved, the right half-plane is
mapped to the domain on the right of the positively traversed real line,
which is the lower half-plane.

(c) The real axis is mapped to a circle through w(0) = —1 and w(co) = +1.
Since the real and imaginary axes are orthogonal, their images are orthogo-
nal. Thus the image of the real line is a circle through +1 that is orthogonal
to the real line. There is only one such circle, the unit circle. Consequently,
the image of the real line is the unit circle {|w| = 1}.

(d) Since the image of the real line is the unit circle, the image of the
upper half-plane does not cross the unit circle, and it must coincide either
with the inside {|w| < 1} or with the exterior domain {|w| > 1} together
with co. Since ¢ is mapped to 0, which is inside the unit circle, the image of
the upper half-plane is the inside, that is, it is the open unit disk {|w| < 1}.
(e) The image of the horizontal line through i is a circle passing through 0
and 1, and it lies inside the unit disk, so it must be the circle centered at
% of radius 3.

AN

The image of any horizontal line is a circle through w(co) =1, and it is
orthogonal to the real line (the image of the imaginary axis). These images
of the horizontal lines form a pencil of circles as sketched in the figure. The
images of vertical lines are circles through w(co) = 1. Since the real axis is
the image of the imaginary axis, these circles must be tangent to the real
axis at 1. The images of the vertical lines are also sketched in the figure.
Note that the images of the horizontal and vertical lines are orthogonal to
each other.

Exercises for 11.7

1. Compute explicitly the fractional linear transformations determined
by the following correspondences of triples:
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(a) (1+1%,2,0)— (0,00,i—1) (e) (1,2,00)+— (0,1,00)
(b) (0,1,00) — (1,1+414,2) (f)  (0,00,7) — (0,1, 00)
(¢) (o0,1+414,2)+—(0,1,00) (g) (0,1,00) — (0,00,1)
(d) (—Q,i, 2) — (1 —24,0,1 + 2i) (h) (1,1, —1)— (1, 0,—-1)

Consider the fractional linear transformation in Exercise 1la above,
which maps 1 +¢ to 0, 2 to oo, and 0 to ¢ — 1. Without referring to
an explicit formula, determine the image of the circle {|z — 1| = 1},
the image of the disk {|z — 1| < 1}, and the image of the real axis.

. Consider the fractional linear transformation that maps 1 to ¢, 0 to

1+14, and —1 to 1. Determine the image of the unit circle {|z| = 1},
the image of the open unit disk {|z| < 1}, and the image of the
imaginary axis. Illustrate with a sketch.

Consider the fractional linear transformation that maps —1 to —i,
1 to 2¢, and i to 0. Determine the image of the unit circle {|z| = 1},
the image of the open unit disk {|z| < 1}, and the image of the
interval [—1, +1] on the real axis. Illustrate with a sketch.

. What is the image of the horizontal line through ¢ under the frac-

tional linear transformation that interchanges 0 and 1 and maps —1
to 1 4+ ¢7 Illustrate with a sketch.

Show that the image of a straight line under the inversion z — 1/z
is a straight line or circle, depending on whether the line passes
through the origin.

Show that the fractional linear transformation f(z) = (az+b)/(cz+
d) is the identity mapping z if and only if b = c =0 and a = d # 0.

Show that any fractional linear transformation can be represented
in the form f(z) = (az +b)/(cz + d), where ad — bc = 1. Is this
representation unique?

Show that the fractional linear transformations that are real on
the real axis are precisely those that can be expressed in the form
(az+b)/(cz + d), where a, b, ¢, and d are real.

Suppose the fractional linear transformation (az+b)/(cz+d) maps R
to R, and ad — bc = 1. Show that a, b, ¢, and d are real or they are
all pure imaginary.

Two maps f and g are conjugate if there is A such that ¢ = ho
f o h~!. Here the conjugating map h is assumed to be one-to-one,
with appropriate domain and range. We can think of f and g as
the “same” map, after the change of variable w = h(z). A point 2o
is a fixed point of f if f(z9) = z0. Show the following. (a) If f
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is conjugate to g, then g is conjugate to f. (b) If f; is conjugate
to f2 and fs to fs3, then f; is conjugate to f3. (c¢) If f is conjugate
to g, then f o f is conjugate to g o g, and more generally, the m-fold
composition fo---of (m times) is conjugate to go---og (m times).
(d) If f and g are conjugate, then the conjugating function A maps
the fixed points of f to the fixed points of g. In particular, f and ¢
have the same number of fixed points.

Classify the conjugacy classes of fractional linear transformations
by establishing the following:

(a)
(b)

(c)

A fractional linear transformation that is not the identity has
either 1 or 2 fixed points, that is, points satisfying f(zq) = zo.
If a fractional linear transformation f(z) has two fixed points,
then it is conjugate to the dilation z — az with a #0, a # 1,
that is, there is a fractional linear transformation h(z) such
that A(f(z)) = ah(z). Is a unique? Hint. Consider a fractional
linear transformation that maps the fixed points to 0 and oc.
If a fractional linear transformation f(z) has exactly one fixed
point, then it is conjugate to the translation ¢ — ¢(+1. In other
words, there is a fractional linear transformation A(z) such that
R(f(h71(¢))) = ¢ + 1, or equivalently, such that h(f(z)) =
h(z) + 1. Hint. Consider a fractional linear transformation
that maps the fixed point to occ.
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Line Integrals and Harmonic
Functions

In Sections 1 and 2 we review multivariable integral calculus in order to
prepare for complex integration in the next chapter. The salient features
are Green’s theorem and independence of path for line integrals. In Sec-
tion 3 we introduce harmonic functions, and in Sections 4 and 5 we discuss
the mean value property and the maximum principle for harmonic func-
tions. Sections 6 and 7 include various applications to physics. The student
may proceed directly to complex integration in the next chapter after pag-
ing through the review of multivariable calculus in Sections 1 and 2 and
reading about harmonic conjugates in Section 3.

1. Line Integrals and Green’s Theorem

Line integrals play an important role in complex analysis. In this section
and the next we review line integrals in the plane, without filling in all the
details. We begin by saying something about paths and curves.

A path in the plane from A to B is a continuous function ¢ — 7y(t) on
some parameter interval a <t < b such that y(a) = A and y(b) = B. The
path is simple if y(s) # v(t) when s # t. The path is closed if it starts
and ends at the same point, that is, y(a) = v(b). A simple closed path
is a closed path « such that y(s) # (t) fora < s <t <b.

Ar\/B A@/B ACD

simple path path (not simple) simple closed path

If v(t), a <t <b,is a path from A to B, and if ¢(s), a < s < B, is a
strictly increasing continuous function satisfying ¢(a) = a and ¢(8) = b,
then the composition ¥(#(s)), a < s < S, is also a path from A to B.
The composition vy o ¢ is a “reparametrization” of «. For our purposes we

70
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can usually regard v and any of its reparametrizations as being the same
path. (Technically, we should consider equivalence classes of paths.) Note
that reparametrization preserves the order of points of a path; that is, it
preserves orientation.

The trace of the path v is its image y([a,b]), which is a subset of the
plane. When it is clear from context, we will denote the trace of a path
also by . It will not be until Chapter VIII that we need to be careful
about distinguishing the path ~ from its trace.

If one path ends where another begins, the two paths can be concatenated
by following one and then the other, after suitable reparametrization.

A smooth path is a path that can be represented in the form ~(t) =
(z(t),y(t)), a < t < b, where the functions z(t) and y(¢) are smooth, that
is, have as many derivatives as is necessary for whatever is being asserted to
be true. A piecewise smooth path is a concatenation of smooth paths.
By a curve we mean (usually) a smooth or piecewise smooth path.

Let v be a path in the plane from A to B, and let P(z,y) and Q(z,y) be
continuous complex-valued functions on . We consider successive points
on the path, A = (z9,%0), (1,%1), --., B = (Zn,yn), and we form the sum

(1.1) > Pz y)zim — ;) + Y Qs y,) (W1 — vs)-

If these sums have a limit as the distances between the successive points
on v tend to 0, we define the limit to be the line integral of Pdx + Qdy
along v, and we denote it by

(1.2) /Pd:c + Qdy.

Suppose the path y(t) = (z(t),y(t)), a <t < b, is continuously differen-
tiable, that is, the parameter functions z(¢) and y(t) are continuously dif-
ferentiable. Suppose the parameter values t; satisfy z(t;) = z;, y(t;) = yj,
where a = tg < t; < --- < t, = b. By the mean value theorem, there are
points t} between t; and t;,1 such that z(t, 1) — z(t;) = z'(t;)(tj+1 — t5)-
If we substitute this into the first sum in (1.1), we obtain

Y Pla(t;), y(t,)a' () (a1 — 1),

which is a Riemann sum approximating the integral | ° P(x(t), y(t))x'(t)dt.
Similarly, the second sum in (1.1) is a Riemann sum approximating the
integral f Q(z(t),y(t))y'(t)dt. Asthe distances between the successive t;’s
tend to 0, the sums in (1.1) converge to an ordinary garden-variety Rlemann
integral, and we obtain

b b d
(13) [ Pdz+Qdy = [ PeO.venGdt + [ Qat).ue)F d

Thus to evaluate a line integral over a smooth curve, we simply parametrize
the curve by t — (z(t), y(t)), calculate the derivatives dz/dt and dy/dt of
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the components, and plug these into the definite integral in (1.3). To
evaluate the line integral over a path that is only piecewise smooth, we
parametrize each smooth subpath, calculate the corresponding integrals
by (1.3), and add them.

Y B = (xp. yy)

(x2’ y2) (xn~1’ yn—l)

A= (x()9 }’0)

Note that the definition of the line integral over < is independent of the
parameterization of . The parameterization enters only in determining
the ordering of the points on the curve . Thus different parameterizations
give the same integral in (1.3). Also note that if we reverse the direction
of 7, then the line integral is replaced by its negative.

Example. To evaluate fv zydz, where v is the quarter-circle from (1,0)
to (0, 1) on the unit circle, we parametrize v by

(z(6),y(0)) = (cosf,sinf), 0<6<m/2

and we substitute into (1.3). This gives

/2 /2
/myd:c = / cosf@sinfd(cosf) = —/ cos @ sin® 6 df
v 0 0
. _sin39 m/2 1
3 |, 3

Note that the sign is correct, since xy > 0 in the curve v, while dz < 0 on
the curve (since z decreases on the curve).

0,1)¢ 0, 1) ¢
¥(8) = (cos 8, sin 6)
Y D

s

(1, 0) (0, 0) (1,0)

A domain D has piecewise smooth boundary if the boundary of D
can be decomposed into a finite number of smooth curves meeting only
at endpoints. By “smooth” we usually mean “continuously differentiable,”
though in applications the curves making up the boundary will usually be
straight line segments or arcs of circles. We denote the boundary of D
by 0D. For purposes of integration, the orientation of 0D is chosen so
that D lies on the left of a curve in 0D as we traverse the boundary curve
in the positive direction, that is, as the parameter value increases.
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Example. To evaluate | sp Ty dz, where D is the quarter-disk in the first
quadrant, we divide the integral into three pieces,

(0,0) (1,0)
/ zydr = /ZL’deL’ + / zydxr + / zydzx,
oD ¥ (1,0) (0,0)

where v is the quarter-circle in the preceding example, and the other two
paths are straight line segments. The integral along the horizontal interval
on the z-axis is 0, because zy = 0 there. The integral along the vertical
interval on the y-axis is 0, because dr = 0 there. (To see this, either
parametrize the line segment explicitly, or go back to the definition (1.1)
and observe that each of the z;’s is 0.) Using the result of the preceding
example, we find that the value of the integral around 0D is —%.

A very useful tool for evaluating line integrals is provided by Green’s
theorem, which converts a line integral around the boundary of a domain
to an area integral over the domain.

Green’s Theorem. Let D be a bounded domain in the plane whose
boundary 0D consists of a finite number of disjoint piecewise smooth closed
curves. Let P and (Q be continuously differentiable functions on D U 0D.
Then

(1.4) /aDpda: + Qdy = //D (%f:j- . Z—I;)d:rdy.

Example. We again evaluate |, sp LY dz, where D is the quarter-disk in the
first quadrant, this time using Green’s theorem. In this case, P(z,y) = Ty
and Q(z,y) = 0, so (1.4) becomes

/ zydr = —// zdrdy = —//rcos&rdrd&
aD D

/2 1 1
= —/ COSHdH/ ridr = —(1)(3),
0 0 3

as before.

Since Green’s theorem is of fundamental importance, we provide a sketch
of the ideas behind the derivation of the formula (1.4). One basic idea is
to cut the domain into little curvilinear triangular pieces and treat each
piece separately. Another is to reduce the double integral over a triangle
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to a line integral by applying the fundamental theorem of calculus in one
variable with the other variable as a parameter. For convenience, we break
the proof-sketch into three steps.

The first step is to establish the formula (1.4) for the triangle T' with
vertices at (0,0), (1,0), and (0,1). We must establish the two identities

/ Pdx :—// dx dy, Qdy :/ @—dmdy.
aT 8T T Oz

Consider just the first identity here. We represent the double integral as
an iterated integral and use the fundamental theorem of calculus, to obtain

// d:z:dy—/ol[/ol maajdy}dm—/o P(z,1-z)dz— /P(;c 0)dz.

The sum on the right we recognize as — faT Pdz, after we parametrize
separately the three sides of OT. Indeed, the line integral of Pdx along the
vertical edge of T is 0, smce dx = 0 there; the line integral of Pdx along
the bottom edge of T is fo P(z,0)dz; and the line integral of Pdz back

along the hypotenuse of T is — fo P(z,1 — z)dx, where we have used the
parameterization y =1 — x.

©, 1)
7 Ta

0, 0) (1,0)

differentiable triangle

The second step of the proof is to establish the formula for any domain D
that can be obtained from the triangle T" by a change of variables. (See
Exercise 7.)

The final step in the proof, for an arbitrary domain D, involves triangu-
lating D, that is, cutting D into small triangular pieces, each of which can
be obtained from the triangle T by a change of variables. Green’s theorem
is applied to each triangular piece, and the results are added. The sum of
the area integrals over the triangular pieces is the area integral over D. The
boundary integrals over the sides of the triangular pieces inside D cancel
in pairs, since each curvilinear triangle side is traversed twice, once in each
direction, and the opposing directions cancel. The boundary integrals over
the curvilinear triangle sides in D add up to the integral over dD.

triangulation
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Note that we will be using Green’s theorem only for relatively simple do-
mains, those whose boundaries consist of straight line segments and circular
arcs, for which Green’s theorem can be established relatively easily.

Exercises for II1.1

1.

Evaluate f,y y?dz + z2dy along the following paths ~y from (0,0) to

(2,4): (a) the arc of the parabola y = z%; (b) the horizontal interval
from (0,0) to (2,0), followed by the vertical interval from (2,0) to
(2,4); (c) the vertical interval from (0,0) to (0,4), followed by the
horizontal interval from (0, 4) to (2, 4).

. Evaluate [ zydz both directly and using Green’s theorem, where

~v is the boundary of the square with vertices at (0,0), (1,0), (1, 1),
and (0, 1).

Evaluate | 5D z%dy both directly and using Green’s theorem, where
D is the quarter-disk in the first quadrant bounded by the unit circle
and the two coordinate axes.

Evaluate [ ydz both directly and using Green’s theorem, where v
is the semicircle in the upper half-plane from R to —R.

Show that [, zdy is the area of D, while [, ydz is minus the
area of D.

Show that if P and ) are continuous complex-valued functions on
a curve -y, then

F(w) = / Pdz + Qdy (z=x+1y)

Z—w ~ 2T W

is analytic for w € C\y. Express F’(w) as a line integral over 7.

Show that the formula in Green’s theorem is invariant under coor-
dinate changes, in the sense that if the theorem holds for a bounded
domain U with piecewise smooth boundary, and if F(zx,y) is a
smooth function that maps U one-to-one onto another such do-
main V and that maps the boundary of U one-to-one smoothly onto
the boundary of V, then Green’s theorem holds for V. Hint. First
note the change of variable formulae for line and area integrals, given
by

¢ B¢ )
Pd o POF '—-—d ‘_d ’
¢ 8U( )<3¢U v Oy Y

av
// Rdtdn — //(RoF) det Jr dz dy,
Vv U
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where F(z,y) = (é(z,y),n(z,y)), and where Jg is the Jacobian
matrix of . Use these formulae, with R = —0P/0n. The summand
[ Qdn is treated similarly.

8. Prove Green’s theorem for the rectangle defined by z9 < z < 3
and yo < y < y1 (a) directly, and (b) using the result for triangles.

2. Independence of Path

In order to draw a useful analogy with single-variable calculus, we begin
by reviewing the fundamental theorem of calculus. Recall that F'(t) is an
antiderivative for f(t) if its derivative is f, that is, F’ =

Fundamental Theorem of Calculus.
Part 1. If F(t) is an antiderivative for the continuous function f(t), then

b
/ ft)dt = F(b) - F(a).

Part II. If f(t) is a continuous function on [a, b], then the indefinite integral

t
F(t) = / f(s)ds, a<t<b

is an antiderivative for f(t). Further, each antiderivative for f(t) differs
from F(t) by a constant.

If h(z,y) is a continuously differentiable complex-valued function, we
define the differential dh of h by

We say that a differential Pdx + Qdy is exact 1f Pdzx + Qdy = dh for some
function h. The function h plays the role of the antiderivative, and the
following theorem is the analogue of Part I of the fundamental theorem of
calculus. It provides a useful tool for evaluating line integrals.

Theorem (Part I). If~ is a piecewise smooth curve from A to B, and if
h(z,y) is continuously differentiable on v, then

(2.1) / dh = h(B) — h(A).

To see this, let the curve be given by t — (z(t),y(t)), a <t < b. From
(1.3) we have

/dh - /—da: —dy — gh‘(?t’dt + / gﬁ%dt
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By the chain rule and the fundamental theorem of calculus, this is
b d b
[ Sha@.u0)d = ha@.ue) = hB)-ha),

Example. To evaluate f7 2zydr + (2% + 2y) dy, where v is the quarter-
circle given by v(f) = (cos8,sinf), 0 < 6 < w/2, we could proceed as
in the preceding section and plug the parameterizing functions into (1.3).
However, in this case it is easier to observe that 2zy dz + (z? + 2y)dy = dh
for h(z,y) = 2%y + y2. Consequently,

(0.1)
/2mydx+(:v2+2y)dy = (2%y +9%) =1-0 = 1

Y (1,0)
Unfortunately, not every differential Pdr + Qdy is exact. We aim to give
some conditions that can be used to determine when a differential is exact.
Let P and @ be continuous complex-valued functions on a domain D.
We say that the line integral [ Pdz + Qdy is independent of path in D
if for any two points A and B of D, the integrals fv Pdx + Qdy are the
same for any path v in D from A to B. This is tantamount to requiring
f7 Pdx + Qdy = 0 for any closed path v in D. Indeed, if 7, and 7, are two
pathsin D from A to B, then we can form a closed path v in D, starting and
ending at A, by following v, from A to B and then following v, backwards
from B to A. Since the reversal of direction along v, changes the sign of
the integral, we have fv = f% — fw, so that [ = 0 if and only if f% =/,

72 B B
Aq:j A@

Y1 YEN "2

Formula (2.1) shows that the integrals of exact differentials are indepen-
dent of path. The converse is easily seen to be true also.

Lemma. Let P and Q be continuous complex-valued functions on a do-
main D. Then [ Pdz + Qdy is independent of path in D if and only if
Pdx + Qdy is exact, that is, there is a continuously differentiable function
h(z,y) such that dh = Pdx + Qdy. Moreover, the function h is unique, up
to adding a constant.

Suppose that [ Pdz + Qdy is independent of path in D. Fix a point A
in D, and define a function A(z,y) on D by

B
h(B) :/ Pdr + Qdy, BeD,
A

where we may take any path in D from A to B. We compute the partial
derivatives of h(z,y) by choosing some special paths. Fix (zo,y0) in D,
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and fix a path v from A to (z¢,yo). For x near xo, we evaluate h(x,yo)
by following the path v from A to (xo,yo) and then the straight line path
xz(t) =1, y(t) = yo from (zo,y0) to (z,y0)- This gives

h(z,y0) = /Pd:t-}-Qdy + / P(t,yo) dt.
vy Zo

Since the first summand on the right is a constant, we obtain from the
fundamental theorem of calculus that

oh

g(xo,yo) = P(z0,Y0)-

Similarly, we obtain

oh
55(3307 Y0) = Q(zo,v0),

and consequently dh = Pdx + Qdy. For the uniqueness, note that if h; is
any other function such that dh; = Pdx + Qdy, then d(h — h;) = 0, that
is,

0 o
so(h—h) =0 = gy h =)

Since D is a domain, A — h; is constant on D.
Let P and @Q be continuously differentiable complex-valued functions on
a domain D. We say that the differential Pdx + Qdy is closed on D if
oP oQ

2.2 — = =

(2:2) Oy ox
This is precisely the condition that the integrand in Green’s theorem is
zero. Thus Green’s theorem implies that if Pdz + Qdy is closed on D, then
Joy Pdz + Qdy = 0 for any bounded domain U with piecewise smooth
boundary such that U together with its boundary is contained in D.

Lemma. Exact differentials are closed.

Indeed, if Pdx + Qdy = dh is exact, then
oP 0 Oh 0 Oh oQ

oy  Oydx  0Oxdy Oz

Not every closed differential is exact. For certain domains, the so-called
simply connected domains, any closed differential is exact; in fact, this
statement characterizes simply connected domains. We content ourselves
with the following theorem for star-shaped domains, which includes the
simply connected domains of most interest to us. The theorem is the ana-
logue of Part II of the fundamental theorem of calculus. It gives conditions
on a smooth differential to have an antiderivative, that is, to be exact.
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Theorem (Part IT). Let P and @ be continuously differentiable complex-
valued functions on a domain D. Suppose

(i) D is a star-shaped domain (as a disk or rectangle), and

(ii) the differential Pdx + Qdy is closed on D.

Then Pdz + Qdy is exact on D.

The proof is similar to the one given just above. Suppose that D is
star-shaped with respect to the point A € D. We define h(B) at any point
B € D by

B
h(B) = / Pdr + Qdy,
A

where the path of integration is the straight line segment from A to B.
We claim that dh = Pdz + Qdy. To see this, fix B = (x9,y0), and let
C = (z,yo) lie on the horizontal line through B and close enough to B so
that the triangle with vertices A, B,C lies within D. We apply Green’s
theorem to the triangle, to obtain

(/AB + /BC +/CA>(Pd$ + Qdy) = 0.

C B C
/ (Pdz + Qdy) — / (Pdz + Qdy) = / (Pdz + Qdy),
A A B

Thus

or
h(z,y0) — h(zo,y0) = / P(t,yo) dt.
zo

From the fundamental theorem of calculus we obtain

oh
%(xo,yo) = P(l’o,yo)-

Similarly,

g—Z(ﬂio,yo) = Q(z0,%0)-

Consequently, dh = Pdz + Qdy, and Pdz + Qdy is exact.
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Example. Consider the differential

—ydzr + zdy
z2 + y?

) z + 1y € C\{0}.

A straightforward calculation (Exercise 2) reveals that the differential is
closed on C\{0}. If we integrate the differential around the unit circle,
using the parameterization x = cosf, y = sin ), we obtain

—ydzr + zdy 2m
j{ P = / df = 2m.
|z|=1 Yy 0

Thus the integral is not independent of path, and the differential is not
exact on C\{0}. On the other hand, since C\(—00,0] is a star-shaped do-
main, the differential is exact on C\(—o0,0]. On this domain the differential
coincides with d(Arg z).

Now suppose that Pdxr + Qdy is a closed differential on a domain D.
We fix points A,B € D, and we consider paths v in D from A to B.
The integral fv Pdz + Qdy may depend on the path y. We claim, how-
ever, that if two paths vy and v are “sufficiently near” to each other,
then [ Pdr+ Qdy = [ Pdx + Qdy. By “sufficiently near” we mean
that there are successive points A = Ag, A;1,A42,... ,A, = B on vy and
A=Cy,C1,Cy,...,C, = B on v such that the intervals on vy from A;_;
to Ax and on v from Ci_; to Cj are contained in the same disk Ag, which
is contained in D. To see that the integrals are the same, we let v; be the
path in D that follows v from A to the point Ci, then follows a straight line
segment in Ag from Cj to Ag, then follows ¢ from A to B. Thus v is
obtained from 7;_; by changing only the subpath in Ay from Cr_; to Ay,
so that instead of following the straight line from Ci_; to Ax_; and then
Yo from Ag_1 to A, we follow v from C;_; to Cir and then the straight
line from Cy to Ag. Since the integral of Pdzr + Qdy is independent of path
in the disk Ag, this change in v5_; to vx does not affect the integral,

/ Pd:c+Qdy:/Pd:c+Qdy, 1<k<n.
Yk—1 Yk
Since 7, = -y, we obtain after n steps
/de +Qdy = / Pdz + Qdy.
¥ Yo

This identity holds not only if v is near 9 but whenever v can be obtained
by deforming ~y¢ continuously. We state the deformation theorem formally.

A Ap B=An=Cn
C C2 Ck—l C

k
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Theorem. Let D be a domain, and let vo(t) and v1(t), a <t < b, be two
paths in D from A to B. Suppose that vy can be continuously deformed
to 71, in the sense that for 0 < s < 1 there are paths 4(t), a <t < b, from
A to B such that v,(t) depends continuously on s and t for 0 < s < 1,
a <t <b. Then

(2.3) / Pdx + Qdy = / Pdx + Qdy
Yo B!
for any closed differential Pdx + Qdy on D.

The idea of the proof is that any continuous deformation of vy can be
realized as a finite number of successive modifications by paths in D from A
to B that are close to each other. The proof requires a compactness ar-
gument, but otherwise it is straightforward. The compactness argument
allows us to find paths corresponding to 0 = sp < 81 < -+ < 8y = 1,
and successive t-values a = tg < t; < --- < t, = b such that the subpaths
¥s,_, (t) and s, (t), tk-1 < t < t, lie in the same disk Ajx in D. This
can be done on account of the continuity of v,(t) in s and ¢. Then v, _, is
“sufficiently near” to v,, for each j, and the rolling wave argument above
shows that the integrals of Pdx + QQdy over the two paths are the same,

this for 1 < j < n, so that (2.3) holds.

A slight variation of the argument establishes a deformation theorem for
closed paths in D. These are paths in D that start and end at the same
point. When we deform closed paths, we allow the starting point to move
also.

Yo B

Yo
"

Theorem. Let D be a domain, and let v (t) and 71 (t), a <t < b, be two
closed paths in D. Suppose that vy can be continuously deformed to 71, In
the sense that for 0 < s < 1 there are closed paths v,(t), a <t < b, such
that ~v,(t) depends continuously on s and t for 0 < s <1,a <t <b. Then

Pdx + Qdy = / Pdz + Qdy

Yo Y1

for any closed differential Pdx + Qdy on D.

Summary. We have defined what it means for a differential Pdr + Qdy
to be exact, to be closed, and to be independent of path. We have
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shown that

independent of path <= exact = closed.

For star-shaped domains we have shown that

independent of path <= exact <= closed.

We have also shown that if Pdr + Qdy is a closed differential, then a
deformation in the path from A to B does not change the value of the
integral of Pdx + Qdy along the path.

Exercises for I11.2

1.

Determine whether each of the following line integrals is indepen-
dent of path. If it is, find a function h such that dh = Pdx + Qdy.
If it is not, find a closed path v around which the integral is not
zero. (a) zdz + ydy, (b) z2dx + y°dy, (c) ydx + zdy, (d) ydr — zdy.

. Show that the differential

—ydzx + zdy

12 +y2 » (1,‘, y) 7& (070)’

is closed. Show that it is not independent of path on any annulus
centered at 0.

Suppose that P and @Q are smooth functions on the annulus {a <
|z| < b} that satisfy 0P/0y = 0Q/0z. Show directly using Green’s
theorem that fIZI=r Pdx + @ dy is independent of the radius r, for
a<r<b.

Let P and @ be smooth functions on D satisfying 0P/0y = 0Q/0z.
Let 40 and 7; be two closed paths in D such that the straight line
segment from ~o(t) to v1(t) lies in D for every parameter value t.
Then f,YO Pdz +Qdy = fvl Pdz + Qdy. Use this to give another
solution to the preceding exercise.

Let vo(t) and v1(t), 0 < t < 1, be paths in the slit annulus {a < |z| <
bI\(—b, —a) from A to B. Write down explicitly a family of paths
vs(t) from A to B in the slit annulus that deforms «yy continuously
to ;1. Suggestion. Deform separately the modulus and the principal
value of the argument.

Show that any closed path v(t), 0 < t < 1, in the annulus {a <
|z2| < b} can be deformed continuously to the circular path o(t) =
v(0)e?™*™t 0 < t < 1, for some integer m. Hint. Reduce to the
case where |v(t)] = |y(0)| is constant. Then start by finding a
subdivision 0 = tp < t; < --- < i, = 1 such that arg~y(¢) has a
continuous determination on each interval tj-1 <t <tj.
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7. Show that if 0 and oo lie in different connected components of the
complement C*\ D of D in the extended complex plane, then there
is a closed path v in D such that fv df # 0. Hint. The hypothesis
means that there are § > 0 and a bounded subset E of C\D such
that 0 € E, and every point of E has distance at least 56 from every
point of C\D not in E. Lay down a grid of squares in the plane
with side length 4, and let F be the union of the closed squares in
the grid that meet E or that border on a square meeting F. Show
that OF is a finite union of closed paths in D, and that [, df = 2.

3. Harmonic Conjugates

The basis for application of Green’s theorem to harmonic functions is the
following important observation.

Lemma. If u(z,y) is harmonic, then the differential

ou ou

is closed.

Indeed, for this differential the condition (2.1) for P = —0u/0y and Q =
Ou/dx becomes —08%u/0y? = 8%u/0zx?, which is equivalent to Laplace’s
equation.

Now suppose that u(z,y) is harmonic on a star-shaped domain D. If we
apply the theorem in Section 2 to the differential given in (3.1), we obtain
a smooth function v(z,y) such that

(3.2) dv = —Z—de + %dy.
The equation (3.2) is equivalent to
wo w0
ox oy’ oy ox’

which are the Cauchy-Riemann equations. Thus u + iv is analytic, and we
have established the following theorem.

Theorem. Any harmonic function u(z,y) on a star-shaped domain D (as
a disk or rectangle) has a harmonic conjugate function v(x,y) on D.

By (3.2), the harmonic conjugate v(z,y) is given explicitly up to an
additive constant by

B
ou ou
(3.3) w(B) = /A ~Godr + Sy,
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where A is fixed, and the integral is independent of path in D. If D is a
disk, and we take the path from A to B to be a vertical interval followed by
a horizontal interval, we obtain the formula (5.3) derived in Section II.5.

Example. To find a harmonic conjugate v(z) for © = log |z| on the star-
shaped domain C\(—o00, 0], we express u in the form

1
u(z,y) = 5 log(a® +y?),
and we compute

z )
du = ——dzr + ———=dy.
x2+y2x z2 + y? Y

o

This leads to the identity
zZ
Argz = ———dr + ———=dy, —00, 0],
Ig z /11:2+y2$ $2+y2y z ¢ (—00,0]

since the principal branch Arg z is the unique harmonic conjugate of log | z|
on C\(—o0,0], normalized to vanish at z = 1.

Exercises for I11.3

1. For each of the following harmonic functions , find du, find dv, and
find v, the conjugate harmonic function of .
(a) u(z,y) =z —y (c¢) u(z,y) = sinhx cosy
(b) u(z,y) = z* - 3zy° (d) u(z,y) =

z2 4+ y2

2. Show that a complex-valued function h(z) on a star-shaped do-
main D is harmonic if and only if h(z) = f(z) + g(z), where f(z)
and g(z) are analytic on D.

3. Let D = {a < |z] < b}\(—b, —a), an annulus slit along the negative
real axis. Show that any harmonic function on D has a harmonic
conjugate on D. Suggestion. Fix ¢ between a and b, and define v(z)
explicitly as a line integral along the path consisting of the straight
line from c to |z| followed by the circular arc from |z| to z. Or map
the slit annulus to a rectangle by w = Log z.

4. Let u(z) be harmonic on the annulus {a < |z| < b}. Show that there
is a constant C such that u(z) — C'log |z| has a harmonic conjugate
on the annulus. Show that C is given by

r (%" du

_ T ou (g
C = on | ar (re*’) do,
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where r is any fixed radius, a < r < b.

5. The flux of a function u across a curve v is defined to be

/%ds = /Vu-nds,
'Yan Y

where n is the unit normal vector to v and ds is arc length. Show
that if a harmonic function u on a domain D has a conjugate har-
monic function v on D, then the integral giving the flux is indepen-
dent of path in D. Further, the flux across a path v in D from A
to B is v(B) — v(A).

4. The Mean Value Property

Let h(z) be a continuous real-valued function on a domain D. Let zo € D,
and suppose D contains the disk {|z — z9| < p}. We define the average
value of h(z) on the circle {|z — 29| =7} to be

27 0 do
A(r) = h(zo +1e") —, 0<r<p.
0 27
Since h(z) is continuous, the average value A(r) varies continuously with
the radius r. Since the values of h(z) are all near h(zg) when z is near 2o,
the averages A(r) are also near h(zp) when r is small, and consequently
A(r) tends to h(zp) as r decreases to 0. This can be seen with complete
rigor from the estimates

27 " do
|A(r) = h(z0)| = / [ (20 + 7€) = h(z0)] 5~
0 T
2w do
26
= /o I (z0 + re) — h(zo)] 5o

where we have used the fact that df/2r is a probability measure, that is,
it is positive and its integral is 1. The continuity of h(z) at 2o guarantees
that the integrand in the right-hand side tends to 0 uniformly in 6, so that
the integral tends to 0 as r tends to O.

Theorem. Ifu(z) is a harmonic function on a domain D, and if the disk
{|z — z0| < p} is contained in D, then

27 " do
(4.1) u(zg) = / u(zo +7e%) —, 0<r<op.
0 27

In other words, the average value of a harmonic function on the boundary
circle of any disk contained in D is its value at the center of the disk. To
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see this, we begin with the identity

Ju ou
0 = e + 24
%z—z;)]:r (9y v oz v

which follows immediately from Green’s theorem and the harmonicity of
u(z). (See the Lemma in Section 3.) We parametrize the circle by z(0) =
xg + rcosf and y(f) = yo + rsin b, and we obtain

27 2
0 0 0
(4.2) 0 = r/o {a—z cosf + a—ZsinH} df = T/O —a—g (20 + re'?) db.
Since u(z) is smooth, we can interchange the order of integration and dif-
ferentiation. We obtain after dividing by 277 that

0

O:E

27
N
0
u T — O0<r <o
/0 (z0 + e )27r r<p

Thus

21
/ u (2o + re’f) 49
0 2

™

is constant for 0 < r < p. Since u(z) is continuous at zg, the average value
tends to u(zp) as r — 0, and the constant is u(zg). This establishes (4.1).

We say that a continuous function h(z) on a domain D has the mean
value property if for each point 29 € D, h(zp) is the average of its values
over any small circle centered at zo. In the language of formal mathematics,
this means that for any z¢ € D, there is € > 0 such that

2n oy d
h(z9) = / h(z0+reze) — 0<r<e.
0 27
Our theorem above has a simple restatement: Harmonic functions have
the mean value property. We will show in Chapter X that the converse
is true, that any continuous function on D with the mean value property
is harmonic. This is rather remarkable, since the hypothesis requires only
continuity but no differentiability of the function.

Exercises for I11.4

1. Let f(z) be a continuous function on a domain D. Show that if
f(2) has the mean value property with respect to circles, as defined
above, then f(z) has the mean value property with respect to disks,
that is, if 29 € D and Dy is a disk centered at zg with area A and

1
contained in D, then f(zp) = Z/ f(z)dzx dy.
Do

2. Derive (4.2) from the polar form of the Cauchy-Riemann equations
(Exercise 11.3.8).
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3. A function f(¢) on an interval I = (a,b) has the mean value prop-
erty if

f(s+t>:M s,tel.

2 2 ’

Show that any affine function f(¢) = At + B has the mean value
property. Show that any continuous function on I with the mean
value property is affine.

4. Formulate the mean value property for a function on a domain in R3,
and show that any harmonic function has the mean value property.
Hint. For A € R3 and r > 0, let B, be the ball of radius r centered
at A, with volume element d7, and let 0B, be its boundary sphere,
with area element do and unit outward normal vector n. Apply the
Gauss divergence theorem

// F-ndaz// V- -Fdr
8B, B.

to ¥ = Vu.

5. The Maximum Principle

The strict maximum principle asserts that if a real-valued harmonic func-
tion attains its maximum on a domain D, then it is constant.

Strict Maximum Principle (Real Version). Let u(z) be a real-valued
harmonic function on a domain D such that u(z) < M for all z € D. If
u(z9) = M for some zo € D, then u(z) = M for all z € D.

The idea of the proof is to use the mean value property to show that the
set of points for which u(z) = M is open. Indeed, suppose u(z;) = M, and
express the mean value equality (4.1) in the form

2
(5.1) 0= / [u(z1) — u (21 + re’)] Eiﬁ, 0<r<p.
0 27

Since the integrand is nonnegative (> 0) and continuous, the integral (5.1)
can be zero only if the integrand is zero. Thus u(z; + re¥) = u(z1) = M
for 0 < 9 < 27 and 0 < r < p, and the set {u(z) = M} contains a disk
centered at each of its points, hence is open. Now, the set {u(z) < M} is
also open, since u(z) is continuous. Since D is a domain, one of these two
sets is empty and the other coincides with all of D. (See Section II.1.) In
other words, either u(:) < M for all z € D, or u(z) = M for all z € D,
and this proves the theorem.

Recall that a complex-valued function is harmonic if its real and imag-
inary parts are harmonic, that is, if the function satisfies Laplace’s equa-
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tion. Thus any analytic function is harmonic. There is a strict maximum
principle also for complex-valued harmonic functions. It asserts that if
a complex-valued harmonic function attains its maximum modulus on a
domain D, then it is constant.

Strict Maximum Principle (Complex Version). Let h be a bounded
complex-valued harmonic function on a domain D. If |h(z)| < M for all
z € D, and |h(29)| = M for some 2y € D, then h(z) is constant on D.

This can be derived easily from the real version of the strict maximum
principle. We replace h(z) by Ah(z) for an appropriate unimodular con-
stant A, and we can assume that h(zp) = M. Let u(z) = Reh(z). Then
u(z) is a harmonic function on D that attains its maximum at zo. By the
strict maximum principle for real-valued harmonic functions, u(z) = M for
all z € D. Since |h(z)] < M and Reh(z) = M, we must have Imh(z) =0
for z € D. Hence h(z) is constant on D.

As a corollary of the strict maximum principle we also obtain the follow-
ing version of the maximum principle. In words, it asserts that a complex-
valued harmonic function on a bounded domain attains its maximum mod-
ulus on the boundary.

Maximum Principle. Let h(z) be a complex-valued harmonic function
on a bounded domain D such that h(z) extends continuously to the bound-
ary 0D of D. If |h(z)| < M for all z € 8D, then |h(z)| < M for all z € D.

The proof of the maximum principle hinges on the fact that a continuous
function on a compact set attains its maximum modulus at some point of
the set. (See Section II.1.) In this case the compact set is the union
of the domain and its boundary, which is a closed bounded set. If the
harmonic function attains its maximum modulus at some point of D, then
it is constant. Thus in all cases it attains its maximum modulus on the
boundary of D.

The maximum principle is useful, for instance, for demonstrating con-
vergence of a sequence of harmonic functions. To show that a sequence
of harmonic functions converges in a disk or rectangle, it suffices to ob-
tain good estimates on the boundary of the disk or rectangle, since the
boundary estimates automatically persist in the interior.

Exercises for II1.5

1. Let D be a bounded domain, and let © be a real-valued harmonic
function on D that extends continuously to the boundary 6D. Show
that ifa <u <bon 90D, thena <u <bon D.
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10.

Fix n > 1, » > 0, and A = pe**. What is the maximum modulus
of z™ + X over the disk {|z| < r}? Where does 2™ + A attain its
maximum modulus over the disk?

Use the maximum principle to prove the fundamental theorem of
algebra, that any polynomial p(z) of degree n > 1 has a zero, by
applying the maximum principle to 1/p(z) on a disk of large radius.

Let f(z) be an analytic function on a domain D that has no zeros
on D. (a) Show that if | f(2)| attains its minimum on D, then f(z)
is constant. (b) Show that if D is bounded, and if f(z) extends con-
tinuously to the boundary D of D, then |f(z)| attains its minimum
on 0D.

Let f(z) be a bounded analytic function on the right half-plane.
Suppose that f(z) extends continuously to the imaginary axis and
satisfies |f(iy)] < M for all points iy on the imaginary axis. Show
that |f(z)] < M for all z in the right half-plane. Hint. For ¢ > 0
small, consider (z + 1)7¢f(z) on a large semidisk.

Let f(z) be a bounded analytic function on the right half-plane.
Suppose that limsup |f(z)| < M as z approaches any point of the
imaginary axis. Show that |f(z)] < M for all z in the half-plane.
Remark. This is a technical improvement on the preceding exercise
for students who can deal with a limsup (see Section V.1).

Let f(z) be a bounded analytic function on the open unit disk D.
Suppose there are a finite number of points on the boundary such
that f(z) extends continuously to the arcs of 0D separating the
points and satisfies |f(e®)] < M there. Show that |f(z)] < M
on . Hint. In the case that there is only one exceptional point
z = 1, consider the function (1 — z)°f(z).

. Let f(z) be a bounded analytic function on a horizontal strip in

the complex plane. Suppose that f(z) extends continuously to the
boundary lines of the strip and satisfies |f(z)| < M there. Show
that |f(z2)| < M for all z in the strip. Hint. Find a conformal map
of the strip onto D and apply Exercise 7.

Let D be an unbounded domain, D # C, and let u(z) be a harmonic
function on D that extends continuously to the boundary 0D. Sup-
pose that u(z) is bounded below on D, and that u(z) > 0 on 9D.
Show that u(z) > 0 on D. Hint. Suppose 0 € 0D, and consider
functions of the form u(z) + plog|z| on D N {|z| > €}.

Let D be a bounded domain, and let 290 € 0D. Let u(z) be a
harmonic function on D that extends continuously to each boundary
point of D except possibly zo. Suppose that u(z) is bounded below
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on D, and that u(z) > 0 for all z € 9D, z # zy. Show that u(z) >0
on D.

11. Let E be a bounded set of integer lattice points in the complex
plane. A point m + ni of E is an interior point of E if its four
immediate neighbors m +1+ni, m+ni+1 belong to E. Otherwise,
m + ni is a boundary point of £F. A function on E is harmonic
if its value at any interior point of E' is the average of its values at
the four immediate neighbors. Show that a harmonic function on a
bounded set of lattice points attains its maximum modulus on the
boundary of the set.

6. Applications to Fluid Dynamics

We consider a fluid flow in a domain D in the plane. We think of the
fluid as a collection of particles that move in the plane as time evolves.
We associate with the particle at the point z its velocity vector V(z). The
direction of V (z) is the direction the particle is moving, and the magnitude
|V (2)] is its speed. We make the following assumptions on the flow.

1. The flow is independent of time, that is, the velocity vector field
V(z) does not change with time.

2. There are no sources or sinks in D; that is, no fluid is created or
destroyed in D.

3. The flow is incompressible; that is, the density of the fluid is the
same at each point of D, and it does not change with time.

4. The flow is “irrotational”; that is, there is no circulation of fluid
around small circles centered in D.

We will return shortly to explain this fourth condition. First we define
“fux” across a curve and “circulation” around a closed curve.

Let v be a curve in the plane. We denote the unit tangent vector to -~y
by t and the unit normal vector to v by n. If v is parameterized by arc
length s, v(s) = (z(s), y(s)), then the unit tangent and normal vectors are

given respectively by
dr dy n- (W _d
ds’ ds )’ ~ \ds’ ds )’

The normal component of V to the curve « is then V - n. If the flow is
parallel to v, then V - n = 0, and no fluid crosses . The maximum flow
per unit length is obtained when + is orthogonal to V.

We define the flux of the fluid flow across v to be the integral of the
normal component of V with respect to arc length,

flux across v = /V-nds.
2
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Except for a constant involving units and the density, the flux across vy can
be regarded as the amount of fluid crossing . If we express V = (P, Q)
in terms of its components P and (), we obtain an expression for the flux
across 7y as a line integral:

(6.1) /V-nds = /P@—ds — Qg—?—ds = /de — Qdz.
N v ds ds y

If v is a closed curve, we define the circulation of the fluid flow
around - to be the integral of the tangential component of V with respect
to arc length:

circulation around v = / V -tds.
Yy

This can also be expressed in terms of the components P and Q of V as a
line integral,

(6.2) /V-tds = /Pdatd + Q yds = /de + Qdy.
Y B d Y

Let 7. = zo + €€ be a small circle around a fixed point zg € D. From
(6.2) and Green’s theorem, the amount of fluid circulating around -, is

given by
oP
ths-// (———————)dmd.
f |z—zpl<e oz ay Y

The irrotationality of the fluid flow (the fourth condition above) means
simply that this integral is zero for all small € > 0. This occurs if and only
if the integrand is zero, that is,

oP 0
(6.3) or _ 9@

oy o
Thus the irrotationality of the flow on D means that (6.3) holds on D.

The mathematical formulation of the second and third conditions is that

the net flow of fluid across the boundary of any small circle v, centered at
a point zg of D is zero. Using Green’s theorem again, we obtain

:fV-nds:/de-Qd:v:// (53—P—+8Q>d£rdy
Ye Ye |z—20|<e oz 8y
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We conclude as before that

oP 0

or L %@ _
oz Oy

Thus the second and third conditions on the flow can be reinterpreted to
assert that (6.4) holds on D.

The conditions (6.3) and (6.4) can be expressed directly in terms of the
velocity V(z), as

(6.4)

VxV =0, V-V =0.

This is the form of the equations that is usually most recognizable to phys-
ical scientists. It generalizes to three dimensions.

Now, the condition (6.3) is just that the differential Pdz +Qdy be closed.
On any disk in D, we can then find a smooth function ¢ such that d¢ =
Pdzx + Qdy, that is,

8 8¢
o’ @ =5y

In terms of the vector field V, this is the same as V¢ = V. The function ¢ is
called the potential function of V. It is unique, up to adding a constant.
In terms of ¢, the condition (6.4) is that

0%¢ 0%
572 * a2
that is, that the potential function ¢ is harmonic. On any disk in D, ¢
then has a conjugate harmonic function v, so that f(z) = ¢(z) + iy(z)
is analytic. The function f(2) is called the complex velocity potential
of the flow. It is also unique up to adding a constant. Note that while ¢
and ¢ may be defined on any disk in D, neither ¢ nor v need be defined
on all of D.
The velocity vector field V(z) is expressed in terms of the complex ve-
locity potential f(z) = ¢(z) + i%(2), in complex notation, by

0 0 0 0
9 00 _ 0 0 g

ox ! oy 0Oz ! or
Thus the speed of the fluid particles is given by |V (2)| = |f'(2)].

As we saw in Section II.6, the level curves of ¢ and of ¢ are orthogonal
to each other. Since the level curves of ¢ are also orthogonal to V¢ = V|,
the level curves of ¢ are tangent to V. Thus the fluid particles flow along
the level curves of .

We define the streamlines of the fluid flow to be the level curves of v,
that is, the curves {¢¥ = c}, for ¢ constant. The streamlines of the flow
represent the paths of the fluid particles. The function v (z) is called the
stream function of the fluid flow.

The stream function i can be used to calculate the flux of the fluid flow
across a curve 7. Indeed, the flux across v is given with the help of the

P =

0,

V(z) =
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// v\\% V(@) =Z=(x.-y)= Vo
g O o, y) = (x> = y)/2
\\ A/f/‘

w(z) =xy
fx)=242

Cauchy-Riemann equations by

oY oY /
V  -nds = - —d —dy + —dz = | dv.
/ nas / fyay or N ¥

Thus the flux of the flow across a curve « is equal to the increase of the
stream function v(z) along .

\/
PPz «‘i ////»

A A 4

—

- V= 1 &(z) = log |7|
V=2, 1), d@)=2x+y r

Example. The simplest flow in the plane is a constant flow V = (¢, ),
where o and 3 are constants. The velocity potential ¢ satisfying V¢ = V
is given, up to an additive constant, by ¢(z,y) = ax + By. The stream
function % is the harmonic conjugate of ¢, given up to an additive constant
by ¥(z,y) = ay — Bz. The complex velocity potential of the flow is f(z) =

(a —if8)z.

Example. Consider the vector field on the punctured plane C\{0} defined
by

1
V = —u,,
T

where u, is the unit vector in the radial direction. We can express V(z)
as V(z) for ¢(z) = log |z|. Since log|z| is harmonic, V(z) is the velocity
vector field of a fluid flow. The stream function of the flow is ¢(z) = argz,
which is defined only locally, and the complex velocity potential is f(z) =
log z, also defined only locally. The flux of the flow across a circle centered
at the origin is calculated directly using n = u, and ds = rdf by

27

V -nds = /lur-urrd{) = dfd =
r 0

lz|=7
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This coincides with the increase of the stream function argz around the
circle. The origin is a source for the fluid flow. The speed of the fluid
particles is given by |V(z)| = |f'(2)| = 1/|z| = 1/r. The fluid particles
emanate from the origin and follow along rays at continually diminishing
speeds.

In addition to the four conditions above, there is one further important
condition to be placed on a fluid flow velocity V(z), which is a boundary
condition.

5. If no fluid is injected or extracted through a boundary curve, then
the velocity vector field V(z) is parallel to the boundary along that
curve.

Thus the boundary curve should be a streamline of the flow. and the stream
function ¥ (z) should be constant on the curve.

AN i A
g

source at 0

Example. We consider a fluid flow in the upper half-plane with a source
or sink at 0. The fluid is injected or extracted from the upper half-plane
at a constant rate at the origin. The stream function (z) should be
a harmonic function in the upper half-plane that is constant on each of
the boundary intervals (—o00,0) and (0,+00). Such a function is given
by ¥(z) = Cargz, where C is a constant. The corresponding complex
velocity potential function is f(z) = Clog z, and the velocity vector field is
V(z) = f'(z) = 1/Z = z/|z|%. The flux of the fluid flow entering or exiting
at the origin is the increase of 1(z) along a small semicircle in the upper
half-plane centered at 0, which is 7C. This determines the constant C. If

C > 0, we have a source at 0, and if C < 0, we have a sink at 0.

One way to gain insight into a fluid flow is to map D conformally onto a
domain for which the corresponding flow is simpler to understand. Flows
are preserved by conformal maps, in the following sense. If h: D — U is
a one-to-one analytic function (conformal map) from D onto a domain U,
and if fo(w) = ¢o(w) + iYo(w) is a complex velocity potential for a flow
on U, then the composition f(z) = fo(h(z)) is analytic, hence the complex
velocity potential for a flow on D.

One of the simplest flows to understand is the constant horizontal flow
on the upper half-plane H = {Im z > 0}, for which no fluid enters or leaves
across the bounding real line R. A complex velocity potential for the flow is
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fo(z) = z. The streamlines of the flow are horizontal lines in H, for which
Im(z) is constant. The boundary R of H is a streamline, corresponding to
Im(z) = 0.

Suppose now < is a curve in the plane extending to infinity in both
directions, and suppose D is the domain lying on one side of v. Suppose
we wish to find a fluid flow in D such that no fluid enters or exits through .
According to the boundary condition, v should be a streamline of the flow.
The problem can be solved by finding a conformal map h : D — H that
maps oo to co. In this case the complex velocity potential f(z) = fo(h(2)) is
simply h(z) itself, and the vector velocity for the fluid flow is V(z) = m
The stream function is ¢(z) = Im(h(z)), and this is zero on 7. Thus ~
is a streamline, and the boundary condition is satisfied. Note that any
real multiple Ch(z) is also a complex velocity potential for a fluid flow
that satisfies the boundary conditions and has the same streamlines. It
corresponds to multiplying the velocity vector field by C.

RN W =g)
A T AN ~ T
— — —_— — — —

Example. Consider a fluid flow at a corner, represented by a sector D =
{0 < argz < a}, where 0 < o < 27m. We assume that no fluid passes
through the boundary, so that the boundary of the sector should be a
streamline. We map the sector conformally onto the upper half-plane by a
power function

h(z) = 2™/ = r™/®[cos(nB/a) + i sin(w6/a)].

We take h(z) to be the complex velocity potential. Then the stream func-
tion is the imaginary part of h(z), which is zero on the boundary of the
sector. The streamlines are given in polar coordinates by

r = c(sin(mh/a))" ™/, 0<6<a,

where c is a positive constant. The velocity vector for this flow is given by
V(z) = h'(z), and the speed of the flow is

/ T /o)~
V) = W) = Sl

If 0 < a < 7, the fluid particles traveling near the boundary slow down as
they approach the corner, while if 7 < o < 27, the fluid particles traveling
near the boundary speed up as they make the turn around the corner.

The successful analysis of a two-dimensional flow in D using the tech-
niques of complex analysis often depends upon being able to find a con-
formal map of D onto an appropriate canonical domain, such as the upper
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o //

|X7(z)| — oc at corner IﬂV(z)l — 0 at corner

half-plane, where the solution is apparent. In Chapter XI we will focus on
enlarging our stockpile of conformal maps.

Finally, note that the flows that can be modeled as two-dimensional flows

form a rather narrow class of flows. The flow of air around an airplane wing
profile can be analyzed using techniques of conformal mapping, but the flow
of air around an entire airplane is a three-dimensional problem to which
the techniques of complex analysis do not apply.

Exercises for I11.6

1. Consider the fluid flow with constant velocity V = (2,1). Find the

velocity potential ¢(z), the stream function ¢(z), and the complex
velocity potential f(z) of the flow. Sketch the streamlines of the
flow. Determine the flux of the flow across the interval [0, 1] on the
real axis and across the interval [0, {] on the imaginary axis.

. Fix real numbers « and (3, and consider the vector field given in

polar coordinates by
o
V(r,0) = ;U.r-f-ﬁU.g,

where u, and ug are the unit vectors in the r and @ directions,
respectively. (a) Show that V(r,6) is the velocity vector field of a
fluid flow, and find the velocity potential ¢(z) of the flow. (b) Find
the stream function ¥(z) and the complex velocity potential f(z)
of the flow. (c) Determine the flux of the flow emanating from the
origin. When is 0 a source and when is 0 a sink? (d) Sketch the
streamlines of the flow in the case « = —1 and G = 1.

. Consider the fluid flow with velocity V = V¢, where ¢(r,0) =

(cosB)/r. Show that the streamlines of the flow are circles and
sketch them. Determine the flux of the flow emanating from the
origin.

4. Consider the fluid flow with velocity V = V¢, where

z—l‘.
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Show that the streamlines of the flow are circles and sketch them.
Determine the flux of the flow emanating from each of the singular-
ities at +1.

5. Consider the fluid flow in the horizontal strip {0 < Imz < 7w} with
a sink at 0 and equal sources at +00. Find the stream function 1 (z)
and the velocity vector field V(z) of the flow. Sketch the streamlines
of the flow. Hint. Map the strip to a half-plane by { = e* and solve
a Dirichlet problem with constant boundary values on the three
intervals in the boundary separating sinks and sources.

6. For a fluid flow with velocity potential ¢(z), we define the conju-
gate flow to be the flow whose velocity potential is the conjugate
harmonic function ¥ (z) of ¢(z). What is the stream function of
the conjugate flow? What is the complex velocity potential of the
conjugate flow?

7. Find the stream function and the complex velocity potential of the
conjugate flow associated with the fluid flow with velocity vector
u, /r. Sketch the streamlines of the conjugate flow. Do the particles
near the origin travel faster or slower than particles on the unit
circle?

8. Find the stream function of the conjugate flow of

V(r,()) = _ur+119.
T

Sketch the streamlines of both the flow and the conjugate flow on
the same axes. (See Exercise 2d.)

7. Other Applications to Physics

There are two other physical phenomena that are completely analogous to
fluid dynamics. They are steady-state heat flow and electrostatics. To draw
the analogy, we address each topic area briefly, beginning with steady-state
heat flow.

The normalized heat equation is u; = Au, where u; denotes the deriv-
ative of u with respect to time. The steady-state (or time-independent)
equation for the heat is obtained by setting u; = 0. The heat equation
reduces to Laplace’s equation Au = 0, and thus the steady-state heat dis-
tribution is a harmonic function. In connection with steady-state heat
distribution, it is natural to consider boundary-value problems of the fol-
lowing types.
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Dirichlet Problem. Given a prescribed function v on the boundary of D,
interpreted as the distribution of heat on the boundary, find a harmonic
function v on D such that © = v on the boundary of D.

Neumann Problem. Given a prescribed function v on the boundary
of D, interpreted as the rate of flow of heat through the boundary, find
a harmonic function u on D whose normal derivative du/On = Vu -n
coincides with v on the boundary of D.

Under reasonable conditions on D and v, the Dirichlet problem has a
unique solution u. For a steady-state solution of the Neumann problem,
there can be no net flow of heat through the boundary, faDvds = 0.
Subject to this condition, the Neumann problem also has a unique solution.

The vector field Q = Vu is called the field of flow of thermal energy.
It satisfies

VxQ = VxVu = 0,
V-Q = Au = 0.

The equation V x Q = 0 means that the field Q is irrotational. The
equation V-Q = 0 means that there are no heat sources or sinks within D.
The heat flux across an arbitrary curve + is given by

[ @-nds

where n is the unit normal to v and ds is arc length.

Exercise. Find the steady-state heat distribution in a laminar plate rep-
resented by the unit disk {22 + y? < 1} when the boundary is held at a
constant temperature +1 on the edge of the top half {y > 0, 22 + ¢y = 1}
of the disk, and at —1 on the edge of the bottom half {y < 0, 2 +y? = 1}
of the disk.

Solution. We recall that the argument function Argw has a similar behav-
ior in the upper half-plane H, in that it is constant on each of the intervals
(—00,0) and (0, +00) of the boundary of H. We map the upper half-plane
to the unit disk by a fractional linear transformation so that the interval
(—00,0) corresponds to the lower semicircular edge of the disk and (0, +00)
to the upper semicircular edge. The transformation is given explicitly by

w—1 11—z
- -, w=1 i

w1 1+ 2
Since Log w(z) is analytic on the disk, its imaginary part Argw(z) is har-
monic, and it attains the values 0 on the top edge of the disk and 7 on the
bottom edge. Thus the solution is given by

Zz =

u(z) = 1- 2 Argu(z) = %[Arg(1+z) _ Arg(1—2)].
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This solution can be expressed as u(z) = (27)(¢ + ¥), where ¢ and ¢ are
the angles represented in the figure.

Now we turn to electrostatics. Here it is usual to start with the electric
force field E on D, defined so that E(A) is the force exerted on a unit
charge if it were placed at the point A. The work done on a unit charge
in moving it along a path « in D is then given by the integral [ E - tds,
where t is the unit tangent to the curve, and ds is arc length. The field E is
assumed to be irrotational: V x E = 0. This is equivalent, at least locally,
to assuming that fv E -t ds is independent of path. Thus E = V¢ for some
function ¢, which is called the electric field potential. The work done
on a unit charge in moving it along a path v from A to B is then given by

work done = /E-tds = ¢(B) — ¢(A).
Y

If there are no sources or sinks in D, then V-E = 0, and this is equivalent to
Laplace’s equation A¢ = 0. Thus the electric field potential ¢ is harmonic
in D.

Example. By a “line charge” we mean a uniform distribution of charge
along a line (infinite straight wire) in three-dimensional space. We assume
that the line is perpendicular to the (z,y)-plane. The electric field is then
independent of the z-direction, and it is sufficient to describe it in the
(z,y)-plane. The electric field corresponding to a line charge through the
origin is

up to a constant multiple depending upon units, where u, is the unit vector
in the radial direction. The potential function associated with a line charge
at 0is ¢ = logr, since V¢ = E. Note that ¢ is harmonic; however, ¢ has no
single-valued conjugate harmonic function. The equipotential lines for E
are circles centered at the origin. Through each such circle {|z| = r} there
is a positive outward flux given by

27

/ E-nds:/ E-u,ds = df = 2.
|z|=r |z|=r 0

We say that the origin is a source for the electric field E. The origin is a
sink for the electric field —E.
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Exercise. Find the electric field E and the potential function ¢ in a cir-
cular ring whose inner edge is grounded (¢ = 0) and whose outer edge is
conducting (¢ = constant).

Solution. The problem is invariant under rotations, so we try a potential
solution that is invariant under rotations, say ¢ = alogr+b. The constant
values of the potential on the inner and outer circles determine the con-
stants a and b. The electric field is given by E = V¢ = (a/r)u,, which is
the electric field of a line charge.

As in the case of fluid flow, problems in electrostatics and in heat flow
that are effectively two-dimensional and can be analyzed using complex
analysis and conjugate harmonic functions are very special. A typical
problem in three dimensions involves a vector field F that satisfies the
conditions

VxF =0 (F is irrotational),

V-F =0 (no sources or sinks in D).

Again, the first condition is equivalent to [ F - dx being independent of
path, and we say that F is a conservative field. In this case F = V¢
for some potential function ¢, at least locally. In terms of the potential
function ¢, the second condition becomes A¢ = 0, and ¢ is harmonic.
Thus harmonic functions play an important role, as do the Dirichlet and
Neumann problems. However, in three-dimensional problems the harmonic
functions cannot be analyzed as the real parts of analytic functions, and
conformal mapping techniques are not available.

Exercises for I11.7

1. Find the steady-state heat distribution u(z,y) in a laminar plate
corresponding to the half-disk {z? + y? < 1,y > 0}, where the
semicircular top edge is held at temperature T and the lower edge
(—1,1) is held at temperature T5. Find and sketch the isothermal
curves for the heat distribution. Hint. Consider the steady-state
heat distribution for the full unit disk with the top held at tempera-
ture T and the bottom at temperature T3, where To = (17 +13)/2.

2. Find the potential function ¢(z,y) for the electric field for a con-
ducting laminar plate corresponding to the quarter-disk {z2 + y? <
1,z > 0,y > 0}, where the two edges on the coordinate axes are
grounded (that is, ¢ = 0 on the edges), and the semicircular edge
is held at constant potential V;. Find and sketch the equipoten-
tial lines and the lines of force for the electric field. Hint. Use the
conformal map ¢ = z2 and the solution to the preceding exercise.

3. Find the potential function ¢(z, y) for the electric field for a conduct-
ing laminar plate corresponding to the unit disk where the boundary
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quarter-circles in each quadrant are held at constant voltages Vi, V5,
Vi, and V. Hint. Map the disk to the upper half-plane by w = w(z)
and consider potential functions of the form Arg(w — a).

4. Find the steady-state heat distribution in a laminar plate corre-
sponding to the vertical half-strip {|z| < «/2, y > 0}, where the
vertical sides at £ = +7/2 are held at temperature T, = 0 and the
bottom edge (—7/2,7/2) on the real axis is held at temperature
Ty = 100. Make a rough sketch of the isothermal curves and the
lines of heat flow. Hint. Use w = sinz to map the strip to the
upper half-plane, and make use of harmonic functions of the form
Arg(w — a).

5. Find the steady-state heat distribution in a laminar plate corre-
sponding to the vertical half-strip {|z| < 7/2, y > 0}, where the side
x = —7/2 is held at constant temperature Ty, the side z = 7/2 is
held at constant temperature 7, and the bottom edge (—7/2,7/2)
on the real axis is insulated; that is, no heat passes through the
bottom edge, so the gradient Vu of the solution u(x,y) is parallel
there to the z-axis. Hint. Try linear functions plus constants.

6. Find the steady-state heat distribution in a laminar plate corre-
sponding to the upper half-plane {y > 0}, where the interval (—1,1)
is insulated, the interval (—oo, —1) is held at temperature Tp, and
the interval (1,00) is held at temperature T;. Make a rough sketch
of the isothermal curves and the lines of heat flow. Hint. Use the so-
lution to the preceding exercise and an appropriate conformal map.

7. The gravitational field near the surface of the earth is approximately
constant, of the form F = ck, where k is the unit vector in the =z-
direction in (x, y, z)-space and the surface of the earth is represented
by the plane where z = 0 (the flat earth theory). Show that F is
conservative, and find a potential function ¢ for F.

8. Show that the inverse square force field F = u./r? on R3 is con-
servative. Find the potential function ¢ for F, and show that ¢ is
harmonic.

9. For n > 3, show that the function 1/r*~2 is harmonic on R™\{0}.
Find the vector field F that has this function as its potential.



IV

Complex Integration and
Analyticity

In this chapter we take up the complex integral calculus. In Section 1 we
introduce complex line integrals, and in Section 2 we develop the complex
integral calculus, emphasizing the analogy with the usual one-variable in-
tegral calculus. In Section 3 we lay the cornerstone of the complex integral
calculus, which is Cauchy’s theorem. The version we prove is an immedi-
ate consequence of Green’s theorem. In Section 4 we derive the Cauchy
integral formula and use it to show that analytic functions have analytic
derivatives. Each of the final four sections features a “named” theorem. In
Section 5 we prove Liouville’s theorem. In Section 6 we give a version of
Morera’s theorem that provides a useful criterion for determining whether
a continuous function is analytic. Sections 7 and 8, on Goursat’s theorem
and the Pompeiu formula, can be omitted at first reading.

1. Complex Line Integrals

For complex analysis it is convenient to define dz = dz + ¢dy. According
to this notation, if h(z) is a complex-valued function on a curve v, then

(1.1) Ah(z) dz = Lh(z)dm + i[yh(z)dy.

Suppose v is parameterized by t — z(t) = z(t) + iy(t), a <t < b. The
Riemann sum approximating fv h(z)(dx + idy) corresponding to the sub-
division a = tg < t; < --- < t, = b is given by

D h(z) (@i =) + 0y () (U — ),

where z(t,) = z; = x, + iy,. If we express these sums in terms of the z,’s,
we obtain the Riemann sum approximation

(1.2) /h(z)dz = Zh(Zj)(Zj+1 — z;).

102
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dz idy

[ dx ZOZA

This expression justifies the notation dz.

Example. To compute fOHz 22 dz along the straight line segment from 0
to 1 + i, we parametrize the line segment by z(t) =t + ¢, 0 <t <1, so
that z(t) =t and y(¢t) = t. Then dz = dx +idy = (1 + 7)dt, and we obtain

H—izzz_ ! N2 ; _ )3 ' (1 +9)?
/0 d_/0[(1+)t](1+)dt_(1+>/Otdt__—3 |

1+ L. ;
cos@+isinfh=e

[ ]

0 Vo J

dz
0
lz|=1 ~

where we integrate around the unit circle in the usual positive (counter-
clockwise) direction. The unit circle is parameterized by z(f) = e =
cosf +isinf, 0 < 0 < 27, so that dr = —sinfdf. dy = cosfdf, and

Example. We evaluate

dz = dz+idy = —sinfdf +icosfdf = i(cosf + isinb)dh.
Thus

and the integral becomes

d 21
7{ 4z _ i/ df = 2mi.
|z|=1 < 0

Note in this calculation that dz = ie*?df, which is what is obtained by

applying the usual rule for differentiation of exponentials to z(6) = e*.

Example. For m an integer and R > 0, we show that

0, m # —1,
f (z —20)"dz = { _ #
|Z—‘ZO|:R 271—7/, m = —1.
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We parametrize the circle |z — 29| = R, with the usual positive orientation,
by z(0) = zo+ Re®, and we calculate that dz = iRe*?df. Thus the integral
becomes

27 27
/ (Reze )mZRezedg — iRm+1 / 6i(m+1)0d9.
0 0
The integral on the right is 0 unless m = —1, in which case it is 27r. This
yields the formula.
70+ Re'?

In complex analysis it is customary to denote the infinitesimal arc length d
by |dz|:

|dz| = ds = \/(dfv)2+(dy)2-

This means that if a curve v is parameterized by z( x(t) + 1y(t), then

(1.3) [Yh(z)|dz| - [Yh(z)ds - t))\/ ‘Z)th.

In particular, the length of ~ is

e

The notation can be justified by considering the sums approximating these
integrals. For the subdivision of the parameter interval used earlier, the
usual sum used in multivariable calculus to approximate f,y h(xz,y)ds is

[ Mepds = 3 hG )y @ - )2+ e —9)”

In complex notation this becomes

(1.4) JECLEED ST

Y
In particular, the sum approximating the length L of v is given by
(1.5) L =~ ) |z — 2zl

Example. The parameterization z(8) = zo + Re® of the circle |z — zo| = R
can be used to derive the expression for the infinitesimal arc length for



1. Complex Line Integrals 105

the circle in terms of the central angle 6. In this case, z(8) = Rcos8, so
that dr = —Rsin#df, and similarly dy = Rcosfdf. Thus |dz| = ds =
V/(dz)? + (dy)? = Rdf. The length of the circle is fozﬂ |dz| = 27R, as
usual.

Theorem. Suppose v is a piecewise smooth curve. If h(z) is a continuous

function on vy, then
/h(z) dz| < /|h(z)| |dz|.
Y Y

Further, if v has length L, and |h(z)] < M on v, then

Ah(z) dz

The estimate (1.6) is the triangle inequality for integrals. It will be
used frequently and without reference. The estimate (1.7) is called the
M L-estimate. It may or may not be referred to. These estimates both
follow from the corresponding estimates for the approximating sums. The
triangle inequality (1.6) for integrals follows from the triangle inequality
for the approximating Riemann sums,

> h(z)(za1 —2)| < > IR(z)I(z541 — 255
in view of (1.2) and (1.4). The M L-estimate (1.7) follows from the estimate
D h(z)(zi41 = 2)| < MY |z — 21,

in view of (1.2) and (1.5).

(1.6)

(1.7) < ML.

Example. If we apply the M L-estimate to the first example above, we

obtain
1+i
/ 22dz
0

since |22| < |1+4|%2 = 2 on the straight line segment from 0 to 1+4, and the
segment has length L = /2. Since the value of the integral has modulus
114 43/3 = 21/2/3, in this case the M L-estimate provides only a rough
estimate. A better estimate is obtained by noting that |dz| = /2dt on the
line and applying (1.6):

1+4 1+ 1 2 9/3
/ 22dz| < / 22| |dz| = / (\/Q—t) V2dt = i
0 0 0

3
Since equality actually holds here, this estimate cannot be improved. We
say that the estimate is a sharp estimate.

< 22,




106 IV  Complex Integration and Analyticity
Example. We apply the M L-estimate to

1
% dz = 2mi.
|z—2z0|=R < — 20

In this case the integrand has constant modulus 1/R on the circle of inte-
gration, so we take M = 1/R and L = 2rR. The M L-estimate becomes

1
j[ dz
|z—z0|]=R < — <0

Since equality actually holds here, the M L-estimate is sharp.

< 2.

Exercises for IV.1

1. Let v be the boundary of the triangle {0 <y <1—2z, 0 <z < 1},
with the usual counterclockwise orientation. Evaluate the following
integrals.

(a) /{Rezdz (b) lezdz (c) [yzdz

2. Let v be the unit circle {|z| = 1}, with the usual counterclockwise
orientation. Evaluate the following integrals, for m =0, £1,+2,....

(a) [/zmdz (b) [yzmdz (c) /ﬂ/w dz|

3. Let v be the circle {|z| = R}, with the usual counterclockwise ori-
entation. Evaluate the following integrals, for m = 0, £1,£2,....

(a) / s (b) / 2ldzl () / £ ds

4. Show that if D is a bounded domain with smooth boundary, then

/ zdz = 2i Area(D).
aD

5. Show that

6. Show that

Log 2
]{ ; dz
lz2|l=R <

7. Show that there is a strict inequality

" 2R
f dz
2=k 2™ — 1

RT——]_’ R>1,m21,n20

<
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8. Suppose the continuous function f (¢*) on the unit circle satisfies
|f(e?)] < M and |f zj=1 f (2)dz| = 2rM. Show that f(z) = cZz for
some constant ¢ with modulus |c| = M.

9. Suppose h(z) is a continuous function on a curve . Show that

H(w) :/ h(z) dz, w e C\y,

zZ—Ww

is analytic on the complement of 7, and find H'(w).

2. Fundamental Theorem of Calculus for Analytic Functions

Let f(z) be a continuous function on a domain D. A function F(z) on D is
a (complex) primitive for f(z) if F(2) is analytic and F’(z) = f(z). The
following theorem is the analogue of the first statement of the fundamental
theorem of calculus.

Theorem (Part I). If f(z) is continuous on a domain D, and if F(z) is
a primitive for f(z), then

B
| 1eraz = F@B) - Fa,
A
where the integral can be taken over any path in D from A to B.

This formula follows from the corresponding formula for line integrals.
In this case, we have

oF 10F
F, = —_—— = ———
(2) ox i Oy’
so that
B
F(B) - F(A) = / gr — [COF . OF 1
A A 8117 8y

= ABF'(z)(d$+idy) = /BF’(Z)dz

A

This theorem provides a powerful tool for evaluating definite integrals.
The problem of evaluating ff f(z)dz is reduced to that of finding an ana-
lytic function F'(z) whose derivative is f(z).

Example. To integrate z2 from 1 to i, we observe that 23/3 is a primitive
for 22, and then we proceed as we would to evaluate an ordinary garden-

variety integral,
142 311+ 1 N\ 3
/ 22dz = z (1+7) .
0 3

- T3

0
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This coincides with the result that was obtained in the preceding section
by parameterizing the straight line from 0 to 1 + 7. Note, though, that the
integral is independent of path.

Example. The function 1/z does not have an analytic primitive defined
on any domain containing the unit circle. To evaluate the integral of dz/z
around the unit circle we can still use the primitive F'(z) = Logz in the
slit plane C\(—o00,0], by taking the integral over a path counterclockwise
around the unit circle starting at a point —1 — 0i just below the slit and
ending at a point —1 + 07 just above the slit. Then

— 1403
dz A . . .
— = Logz = in — i(—m) = 2mni,
lz]=1 # —1-03

which coincides with the result obtained earlier by parameterizing the unit
circle.

-1+i0 1

-1-1i0

—i

The analogue of the second statement in the fundamental theorem of
calculus is that every analytic function on a star-shaped domain has a
primitive, which can be defined as an indefinite complex integral.

Theorem (Part ITI). Let D be a star-shaped domain, and let f(z) be
analytic on D. Then f(z) has a primitive on D, and the primitive is
unique up to adding a constant. A primitive for f(z) is given explicitly by

F(z) = /zf(C)dC, 2D,

where zy is any fixed point of D, and where the integral can be taken along
any path in D from z; to z.

To see this, we write f = u + v as usual, and we consider the differen-
tial wdr — vdy. Since f is analytic, the Cauchy-Riemann equations yield
Ou/dy = —0v/0z, and the differential is closed. By the fundamental the-
orem of calculus for line integrals (Section II1.2), the differential is exact
on D, that is, there is a continuously differentiable function U on D such
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that dU = udx — vdy. In other words, U satisfies
ou ou

—_— = U J—
or ’ Ay

These equations show that U is in fact twice continuously differentiable.
Another application of the Cauchy-Riemann equations yields

U N 02U _ Ou ov 0

Ox? oy? Oz oy
Hence U is harmonic. Since D is star-shaped, there is a conjugate harmonic
function V for U on D, so that G = U + 1V is analytic on D. Then

ou v _ou U
oz Oz ox 28y

and G(z) is a primitive for f(z). If Gy(z) is another primitive for f(z),
then G — Gy has derivative zero, and G — Gy is constant on D. If we apply
Part I above to the primitive F(z) = G(z) — G(z¢) for f(z), we obtain the
formula in Part II.

Note in particular that integrals of analytic functions in star-shaped do-
mains are independent of path. This is not true for arbitrary domains. The

identity
d
f Y omi £ 0
|z

|=1 <

= —.

G = = u+iw = f,

shows that the differential dz/z does not have a primitive on the punctured
plane C\{0}.

Exercises for IV.2

1. Evaluate the following integrals, for a path - that travels from —mt
to mi in the right half-plane, and also for a path v from —m? to 7
in the left half-plane.

(a) /z4dz (b) /ezdz (c) [,coszdz (d) f,y sinh z dz

2. Using an appropriate primitive, evaluate f,y 1/zdz for a path v that
travels from —mi to w4 in the right half-plane, and also for a path
from —7i to «i in the left half-plane. For each path give a precise
definition of the primitive used to evaluate the integral.

3. Show that if m # —1, then 2™ has a primitive on C\{0}.

4. Let D = C\(—o00, 1], and consider the branch of V22 — 1 on D that
is positive on the interval (1,00). (a) Show that z + V22 — 1 omits
the negative real axis, that is, the range of the function on D does
not include any values in the interval (—oo, 0] on the real axis. (b)
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Show that Log(z + V22 — 1) is a primitive for 1/v/22 —1 on D. (c)
Evaluate

/ dz

s V22 -1’

where v is the path from —2¢ to +2i in D counterclockwise around
the circle |z| = 2. (d) Evaluate the integral above in the case 7 is

the entire circle |z] = 2, oriented counterclockwise. (Note that the
primitive is discontinuous at z = —2.)

5. Show that an analytic function f(z) has a primitive in D if and only
if f7 f(2)dz = 0 for every closed path v in D.

3. Cauchy’s Theorem

We begin with a smooth complex-valued function f(z) = u + iv, and we
express

f(z)dz = (u+iv)(dz +idy) = (u+iv)dr + (—v +iu)dy.

The condition that f(z)dz be a closed differential is

o} 0
—(u+1w) = —(—v+iu).

oy oz

Taking the real and imaginary parts, we see that this is equivalent to
ou  Ov Ov _ Ou
oy Oz’ oy  ox’

which are the Cauchy-Riemann equations for u and v. Thus we obtain the
following theorem, which is the original form of Morera’s theorem.

Theorem. A continuously differentiable function f(z) on D is analytic if
and only if the differential f(z)dz is closed.

From Green’s theorem (Section III.1.1) we obtain immediately the fol-
lowing far-reaching theorem.

Theorem (Cauchy’s Theorem). Let D be a bounded domain with
piecewise smooth boundary. If f(z) is an analytic function on D that
extends smoothly to 0D, then

f(z)dz = 0.
oD
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e (0570

Example. If we apply Cauchy’s theorem to a function f(z) analytic on
the annulus D = {r < |z| < R}, we obtain

0 = - f(z)dz = 7|{|=Rf(Z)dz - ]{z|=r f(z)d=.

Note the change in sign, due to the fact that the inside boundary circle is
traversed in the negative (clockwise) direction according to its orientation
as a boundary curve for D. Thus

f flz)dz = f(z)d=.

|z|=R |zl=7r

This is in accord with the discussion in Section II1.2, since the differential
f(2)dz is closed, and since the outside circle of the annulus can be con-
tinuously deformed to the inside circle of the annulus through a family of
closed curves (intermediate circles).

Exercises for IV.3

1. By integrating e~%"/2 around a rectangle with vertices +R, it £ R,
y (=) (=)

and sending R to oo, show that
1 e 2 2
—/ e T /2e Ty = 7t /2 oo <t < 00.
V2T J_oo

Use the gnown value of the integral for t = 0. Remark. This shows
that e=% /2 is an eigenfunction of the Fourier transform with eigen-
value 1. For more, see the next exercise.

2. We define the Hermite polynomials H,(z) and Hermite or-
thogonal functions ¢,(z) for n > 0 by

2 dn 2 2
. (_1\n,Z —x — T /2 )
Hz) = (-1 —— (), ¢n(2) = e "/*Ha(a)
(a) Show that H,(x) = 2"z™+--- is a polynomial of degree n that

is even when 7 is even and odd when n is odd.
(b) By integrating the function

) dar
e(z—zt)2/2 Ez_n <e—22)

around a rectangle with vertices =R, it + R and sending R
to 0o, show that

___]_‘___ > —itx _ {_n\n _
m/_wqbn(x)e dr = (—1)"¢pn(t), oo <t < oo.
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Hint. Use the identity from Exercise 1, and also justify and use
the identity

A @i _ 1 8% iy
dx™ 1™ dt™

(c) Show that ¢, — %y + (2n + 1)¢, = 0.
(d) Using [ ¢,¢mdz = [ ¢pnd,,dz and (c), show that

/ " n(@)dm(a)de = 0,  n#m.

Remark. This shows that the ¢,’s form an orthogonal sys-
tem of eigenfunctions for the (normalized) Fourier transform
operator F with eigenvalues +1 and +i. Thus F extends to a
unitary operator on square-integrable functions. Further, F*
is the identity operator, and the inverse Fourier transform is

given by (F~1f)(z) = (Ff)(—2).

3. Let f(z) =co+c1z+ -+ + ¢, 2" be a polynomial.
(a) If the c’s are real, show that

1 2T
| fapis < [Cirenpsl -« d

k=0

Hint. For the first inequality, apply Cauchy’s theorem to the
function f(z)? separately on the top half and the bottom half
of the unit disk.

(b) If the cx’s are complex, show that

1 2 n
[ 1@t < x [ 150 5 = w3 jel
- 0 k=0

1

(c) Establish the following variant of Hilbert’s inequality, that

n n
CjCk 2
E —| < WE lex |,
j7k=03+k+1 —

with strict ineduality unless the complelx numbers ¢y, ... ,Cp
are all zero. Hint. Start by evaluating f; f(z)*dz.

4. Prove that a polynomial in z without zeros is constant (the fun-
damental theorem of algebra) using Cauchy’s theorem, along the
following lines. If P(z) is a polynomial that is not a constant, write
P(z2) = P(0)+ zQ(z), divide by 2P(z), and integrate around a large
circle. This will lead to a contradiction if P(z) has no zeros.
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5. Suppose that D is a bounded domain with piecewise smooth bound-
ary, and that f(z) is analytic on D U dD. Show that

Area(D)
z >0
Sup 12 1@ 2 2 @D
Show that this estimate is sharp, and that in fact there exist D and

f(2) for which equality holds. Hint. Consider [, [z — f(z)]dz, and
use Exercise 4 in Section 1.

6. Suppose f(z) is continuous in the closed disk {|z| < R} and analytic
on the open disk {|z|] < R}. Show that §|Z|=R f(z)dz = 0. Hint.
Approximate f(z) uniformly by f.(z) = f(rz).

4. The Cauchy Integral Formula

Integral representation formulae are powerful tools for studying functions.
One application of an integral representation is to estimate the size of the
function being represented. Another is to obtain formulae for derivatives,
by differentiating under the integral sign. The prototype of the integral
representation is provided by the Cauchy integral formula, representing an
analytic function. The integral representation will allow us to show that
all the derivatives of an analytic function are analytic. It will also allow us
to obtain power series expansions for analytic functions.

Theorem (Cauchy Integral Formula). Let D be a bounded domain
with piecewise smooth boundary. If f(z) is analytic on D, and f(z) extends
smoothly to the boundary of D, then

(4.1) fo) = = [ 14, e

21 op W — 2

To establish the formula, fix a point z € D, let € > 0 be small, and
consider the domain D, = D\{|w — z| < €} obtained from D by punching
out a disk centered at z of radius €. The boundary dD,. is the union of
9D and the circle {|jw — z| = €}, oriented clockwise. Since f(z)/(w — z) is
analytic for w € D., Cauchy’s theorem yields

M)—dw = 0.

8D€’U}—Z

Reversing the orientation of the circle to counterclockwise produces a sign
change, and we obtain

[ [ S,
jw

= W — Z oD W — 2
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Writing w = z + €€, dw = ice®?df, and dividing by 27, we obtain

2
/ flz+ Eew) dé = . f(w) dw.
0

2m 21t Joap W — 2

By the mean value property of harmonic functions, the integral on the
left-hand side coincides with f(z), and the formula is established.

We remark that without the mean value property at our disposal, we
could complete the argument by observing that the integral on the left is
the average value of f(w) on the circle centered at z of radius €. Since
f(w) is continuous at z, these averages tend to f(z) as € — 0. This can be
justified with complete rigor by writing

27 ) do 2w )
/0 f(z +£e’9) 5 = f(z) + /0 [f (z +ee’) — f(z)]

and showing by a direct estimate that the latter integral tends to O as
e — 0.
If we differentiate under the integral sign and use

dam 1 m!

dé

%7

dzm™ w—z (w—2z)m+1”’

we obtain integral formulae for the derivatives f(™(z) of f(z).

Theorem. Let D be a bounded domain with piecewise smooth boundary.
If f(z) is an analytic function on D that extends smoothly to the boundary
of D, then f(z) has complex derivatives of all orders on D, which are given

by

!
(4.2) fm(z) = ;lm /aD (w {(:;)dew, z€ D, m>0.

The case m = 0 of (4.2) is the Cauchy integral formula (4.1). Though it
is not really necessary, we give separately the argument for the case m = 1.
This special case already includes all the ideas for the proof of the general
case.

Using (4.1) and the identity

1 1 Az

w—(z+Az) w—-z  (w—(2+A2)(w-2)’
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we express the difference quotient approximating f’(z) as

fe+s) -5 11 F(w) L[ fw)
Az Az {2m’ /aDw—(z—}-Az)d ©2mi aDw——zdw]
1 1
= % o AN ™

As Az tends to 0, the integrand converges to f(w)/(w — z)?, uniformly for
w € 8D. Hence the integrals converge, and we obtain in the limit that
1 f(w)
! = — d D
1) 271 Jop (w — 2)2 W ze b
which is the case m =1 of (4.2).

The general case of (4.2) is proved by induction on m. We assume that
f(m=2)(2) is complex differentiable and the formula holds for f(m=1)(z).
We must show that f(™~1(z) is complex differentiable and the formula
holds for f("™)(z). Using the binomial expansion

m(m

(w—z—Az)™ = (w—z)m——m(w—z)m_1Az+—T_L)(w—z)m_2(Az)2+~ -

and simplifying, we obtain

1 B 1 _ (w—2)" — (w—2—Az)™
(w—(z+Az))™ (w—2z)™ (w—2)"(w—z— Az)™
mAz m(m — 1)(Az)?

— - + -
(w—2)(w—2z—Az)™ 2w —2))(w— 2z — Az)™

where the dots indicate terms with powers of Az up to (Az)™. The integral

formula for f(™~1(z) then yields the expression

(m—1)! w m 20 | duw
27 /an( )[(w—z)(w—z—Az)m+A( |4

for the difference quotient (f(™~V(z + Az) — f(m~1(2)) /Az. Again the
integrand converges as Az — 0, uniformly for w € 9D, and we can pass to
the limit to conclude that f(™(z) exists and is given by (4.2).

Since each of the successive complex derivatives of f(z) is complex differ-
entiable, each is continuous, and thus each is analytic. The hypothesis that
the domain has smooth boundary is irrelevant for determining analyticity,
as we can restrict the function to an appropriate small disk. Thus we have
proved the following.

Corollary. If f(z) is analytic on a domain D, then f(z) is infinitely dif-
ferentiable, and the successive complex derivatives f'(z), f"(z), ..., are all
analytic on D.
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Example. The Cauchy integral formula for 2? yields

2
?{ i 1dz = 2miz?
|z|=2 2 —

Example. The Cauchy integral formula for the derivative of 22 sin z yields

2%sin 2 2ri d? , , .
—dz = — (2%sin z)
|z| =27

= 271i.

z=1

= mi(dwcosm) = —4n’i.

(z —m)3 2 dz?

Z=Tr

Example. Consider the integral

e?
——dz,
%z|=5 zQ(Z - 1)

which does not have the form given in the Cauchy integral formula. By
applying Cauchy’s theorem to the domain D, obtained by excising two
small disks centered at 0 and 1 from the disk {|z| < 2}, we can express the
integral above as the sum of two integrals, each of which can be evaluated
by the Cauchy formula:

e? e? e?
———dz = }{ ——dz + f —dz
fz|:2 zQ(z - 1) |z|=¢ 2:2(2 - 1) |z—1|=¢ zQ(z - 1)

d e

ML — e
dz (z—1)

+ 21—
22

= 2

z=0 z=1

= —2mi — 2w + 27ie = 2mwi(e — 2).

These integrals can also be handled by residue théory, as we shall soon see.

|IOR0

Exercises for I1V.4

1. Evaluate the following integrals, using the Cauchy integral formula:

(a)% z dz, n>0 (e)% -%dz, —00 < m < 00
l2j=2 2 — 1 z]=1 Z .
2z 0og 2
b 74 dz, n>0 (f) ———dz
( ) lz|=1 2 — 2 [z—1—12}=5/4 (Z - 1)2
(©) sin z & (g dz

lz]l=1 % |zj=1 22(2% — 4)e?
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(d) ]%|:1 cosh z dz (h) dz

283 le—1]=3 2(22 — 4)e7

. Show that a harmonic function is C°°, that is, a harmonic function
has partial derivatives of all orders.

. Use the Cauchy integral formula to derive the mean value property
of harmonic functions, that

27 0 de
u(zo):/ u (2o + pe )—2;, 20 € D,
0

whenever u(z) is harmonic in a domain D and the closed disk |z —
20| < p is contained in D.

. Let D be a bounded domain with smooth boundary 9D, and let
z9 € D. Using the Cauchy integral formula, show that there is a
constant C such that

£ (20)] < C sup{|f(2)| : z € OD}

for any function f(z) analytic on DUJD. By applying this estimate
to f(z)", taking nth roots, and letting n — oo, show that the
estimate holds with C = 1. Remark. This provides an alternative
proof of the maximum principle for analytic functions.

5. Liouville’s Theorem

Suppose that f(z) is analytic on the closed disk {|z — 29| < p}, that is,
it is analytic on some domain containing the closed disk. By the Cauchy

integral formula for f(")(z2),

Fm) (5) = m!/| _ ————&dz

-272' (Z — Zo)m+l )

We parametrize the boundary circle by z = zg + pe®?, dz = ipe*®df. Then

1 f(2) 5 — f (20 + pe®®) df
27 (z — z9)™H! ‘= pmevm®  2x’
and we obtain
m!

27 )
f(m)(zo) - _p_m./o f(Zo+peze)e

The obvious estimate

T :
£ (z0)| < Ln;;/ |f (20 + pe™)
P Jo

now leads to the following version of the Cauchy estimates.

—z’mO_d_H
o

&0
27
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Theorem (Cauchy Estimates). Suppose f(z) is analytic for |z—zo| < p.
If|f(2)| < M for |z — 2| = p, then

lf(m)(zo)l < %M, m > 0.

Note that this estimate scales correctly with respect to M, in the sense
that if we multiply f(z) by a positive constant, the estimate is multiplied
by the same constant. It also scales correctly with respect to p, in the sense
that if we dilate the disk by a factor ¢ > 0, then both the mth derivative
of the dilated function and the factor 1/p™ are multiplied by 1/c™. The
estimate is invariant under translations. In effect it would have sufficed
to check the estimate in the special case of analytic functions on the unit
disk that are bounded in modulus by one on the unit circle. In this special
case the estimate asserts that all derivatives of the function are bounded
in modulus by one at the origin.

As an application of the Cauchy estimates, we prove the following.

Theorem (Liouville’s Theorem). Let f(z) be an analytic function on
the complex plane. If f(z) is bounded, then f(z) is constant.

Indeed, suppose |f(z)] < M for all z € C. We can apply the Cauchy
estimate to a disk centered at any zp, of any radius p, to obtain

1 (z0)] < %

Letting p tend to +o00, we obtain f/(z9) = 0. Since this is true for all 2,
f(2) is constant.

We define an entire function to be a function that is analytic on the
entire complex plane. The polynomials a,z™ + --- + a1z + a¢ are entire
functions. The transcendental functions e?, cos z, sin z, cosh z, sinh z are
also entire. Any linear combination of entire functions is entire, and any
product of entire functions is entire. Examples of functions that are not
entire are 1/z, logz, and /=.

In terms of entire functions, Liouville’s theorem has a succinct statement:
A bounded entire function is constant.

As a test of the strength of Liouville’s theorem, we apply it to give
yet another proof (one of hundreds of proofs) of the fundamental theorem
of algebra, that every polynomial in z of degree n > 1 has a zero. (See
Section I.1.) The proof is by contradiction. Suppose p(z) = 2™ +a,_12" "'+
.-+ 4+ ag is a polynomial with no complex root. Then 1/p(z) is an entire
function. Since

Ay — Qa,
p(z) n—1 4+ e 4 __(_)_
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tends to 1 as z — 00, p(z) — oo and 1/p(z) — 0 as z — oco. Consequently,
1/p(z) is bounded. By Liouville’s theorem, 1/p(z) is constant. Since the
constant cannot be 0, we have a contradiction. Our supposition is false,
and p(z) must have a zero.

Exercises for IV.5

1. Show that if u is a harmonic function on C that is bounded above,
then u is constant. Hint. Express u as the real part of an analytic
function, and exponentiate.

2. Show that if f(z) is an entire function, and there is a nonempty disk
such that f(z) does not attain any values in the disk, then f(z) is
constant.

3. A function f(z) on the complex plane is doubly periodic if there
are two periods wo and w; of f(z) that do not lie on the same
line through the origin (that is, wy and w; are linearly independent
over the reals, and f(z +wg) = f(z + w1) = f(2) for all complex
numbers z). Prove that the only entire functions that are doubly
periodic are the constants.

4. Suppose that f(z) is an entire function such that f(z)/z" is bounded
for |z| > R. Show that f(z) is a polynomial of degree at most n.
What can be said if f(z)/z"™ is bounded on the entire complex plane?

5. Show that if V(z) is the velocity vector field for a fluid flow in the
entire complex plane, and if the speed |V (z)| is bounded, then V(z)
is a constant flow.

6. Morera’s Theorem

What Morera did was to observe that the differential f(z)dz is closed if
and only if f(2) is analytic. The following more precise variant of this
observation is often referred to as “Morera’s theorem.” It has a number of
useful applications.

Theorem (Morera’s Theorem). Let f(z) be a continuous function on
a domain D. If [, f(z)dz = O for every closed rectangle R contained in D
with sides parallel to the coordinate axes, then f(z) is analytic on D.

The power of Morera’s theorem resides in the fact that no hypothesis is
made concerning the smoothness of f(z). Only continuity is required.
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ez+ Az

To prove the theorem, we can assume that D is a disk with center zp.
Define

i) = [ fOd,  zeD,

where the path of integration runs along a horizontal line and then a vertical
line, as indicated in the figure. We could as well define F'(z) using the path
starting from z, along a vertical line followed by a horizontal line. The
hypothesis guarantees that these two paths yield the same integral, as the
difference is the integral of f(z)dz over the boundary of a rectangle. Now
we differentiate F'(z) by hand. We have

z+Az
F(z+ Az) — F(z) = / £(0) dc,

where the path of integration is the path from z to z + Az that follows a
horizontal line and then a vertical line, as in the figure. Here we have again
used the fact that the integral along the boundary of a rectangle is zero, as
indicated in the figure. To deal with the integral on the right, we use the
trick of adding and subtracting f(z) from the integrand. Since z is fixed,
the value f(z) is constant for the integration, and we obtain

z+Az z+Az
F(z+Az) - F(z) = f(2) / ac + / (FO) — f(2))de

z+Az
= f()Az+ / (F(O) - f(2))dc.

Now, the length of the contour from 2 to z + Az is at most 2|Az|. If we
divide by Az and use the M L-estimate on the last integral, we obtain

F(z+ Az) — F(z2)
2 FE g

S 2M€7 |AZ| < €,

where M, is the maximum of |f({) — f(z)| over all ( satisfying |( — z| < e.
Since f(() is continuous at z, M, tends to 0 as € — 0. Consequently, F'(z) is
complex differentiable, with complex derivative F’(z) = f(z). Since f(z) is
continuous, F(z) is analytic, and since f(z) is the derivative of an analytic
function, f(z) is also analytic.

There is a metatheorem to the effect that if the integrand depends ana-
lytically on a parameter, then the integral depends analytically on the pa-
rameter. This sort of theorem is easy to prove using Morera’s theorem and
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switching the orders of integration. To illustrate this idea, we prove the
following typical theorem on analyticity of integrals.

Theorem. Suppose that h(t,z) is a continuous complex-valued function,
defined for a <t < b and z € D. If for each fixed t, h(t,z) is an analytic
function of z € D, then

b
H(z) = / h(t, z) dt, z€ D,
is analytic on D.

To see this, note first that H(z) is continuous on D. Indeed, if z, — z,
then h(t, z,) — h(t, z) uniformly for a <t < b, so H(z,) — H(z2). Let R
be a closed rectangle in D. By Cauchy’s theorem, we have

/ h(t,z)dz = 0.
OR

b
// h(t,z)dzdt = 0.
a JOR

Parameterization of the sides of R converts the inside integral to a sum
of four garden-variety integrals of a continuous function, and we can inter-
change the order of integration. This yields

0 = /{m/abh(t,z)dtdz = [ H()d-

OR

The hypotheses of Morera’s theorem are met, and H(z) is analytic.
As another typical application, we prove the following useful result.

Consequently,

Theorem. Suppose that f(z) is a continuous function on a domain D that
is analytic on D\R, that is, on the part of D not lying on the real axis.
Then f(z) is analytic on D.

Let R be a closed rectangle contained in D, with sides parallel to the coor-
dinate axes. To prove the theorem, it suffices to show that [, f(2)dz = 0.
There are three cases to consider. If the closed rectangle R does not meet
the real axis R, then f(z) is analytic on R, so the integral is zero by
Cauchy’s theorem. For the second case, suppose that R has one edge that
lies on the real axis, say the lower edge of R is an interval [a,b] on the
real axis. For € > 0 small, let R. be the closed rectangle in the upper
half-plane consisting of z € R such that Im z > . By Cauchy’s theorem,
faRE f(z)dz = 0. We claim that

(6.1) (2)dz — | f(2)dz
OR, AR
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as € — 0. Indeed the integral along the bottom edge of R. has the form

b
/ f(t +ie)dt,

and since f(t+ ie) converges to f(t) as € — 0, uniformly for a <t < b, the
integrals converge to the integral f: f(t)dt of f(z) along the bottom edge
of R. The top edge of R. coincides with the top edge of R, and the vertical
sides of R, differ from the vertical sides of R only by vertical intervals of
length e, whose contribution to the integral tends to 0 with €. Thus (6.1)
holds, and we conclude in this case that [, f(z)dz = 0. Finally, if the
top edge of R is in the upper half-plane and the bottom edge of R is in
the lower half-plane, we define R, to be the part of R in the closed upper
half-plane and R_ to be the part of R in the closed lower half-plane. Then
the integrals of f(z) around OR, and OR_ are both zero, by case two.
Thus

f(z)dz = f(z)dz + f(z)dz = 0,
OR AR+ SR

and the analyticity follows from Morera’s theorem.

Y R, A
——
Y R. A
= 4
. ) R_ A
> v >

Exercises for IV.6

1. Let L be a line in the complex plane. Suppose f(z) is a continuous
complex-valued function on a domain D that is analytic on D\L.
Show that f(z) is analytic on D.

2. Let h(t) be a continuous function on the interval [a,b]. Show that
the Fourier transform

b
H(z) = / h(t)e ®dt
a
is an entire function that satisfies
|H(z)| < CeAll, 2=z + +iy e C,

for some constants A,C > 0. Remark. An entire function satisfying
such a growth restriction is called an entire function of finite

type.
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3. Let h(t) be a continuous function on a subinterval [a,b] of [0, oc).
Show that the Fourier transform H(z), defined as above, is bounded
in the lower half-plane.

4. Let v be a smooth curve in the plane R?, and let D be a domain in
the complex plane, and let P(z,y,() and Q(z,y,({) be continuous
complex-valued functions defined for (z,y) ony and ¢ € D. Suppose
that the functions depend analytically on ¢ for each fixed (z,y) on .
Show that

G(0) = / P(z,y,¢)dz + Q(z,9,¢)dy

is analytic on D.

7. Goursat’s Theorem

We have defined f(z) to be analytic on D if the complex derivative f’(z)
exists at each point of D and further, f’(z) is a continuous function of z.
Goursat’s theorem asserts that the requirement that f’(z) be continuous is
redundant.

Theorem (Goursat’s Theorem). If f(z) is a complex-valued function
on a domain D such that

Fne) — i L2 =10

zZ—20 Z— 2

exists at each point zy of D, then f(z) is analytic on D.

Goursat’s theorem is as useless as it is aesthetically pleasing. In appli-
cations it has always turned out that if one can show the existence of a
complex derivative at each point, then one can see with little more effort
that the complex derivative is continuous. Nevertheless, the idea of the
proof has proved to be very useful in other contexts.

The proof is based on Morera’s theorem. Let R be a closed rectangle
in D. We subdivide R into four equal subrectangles. Since the integral
of f(z) around AR is the sum of the integrals of f(z) around the four
subrectangles, there is at least one of the subrectangles, call it R, for
which

1
>
!

f(2)dz

OR,

f(z)dz
OR

Now subdivide R; into four equal subrectangles and repeat the procedure.
This yields a nested sequence of rectangles {R,} such that

1 1
/81:{"_1 f(z)dz

> - > e > —

f(2)dz| > 5 > 2 o

{ f(z)dz
OR.,. OR
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Since the R,’s are decreasing and have diameters tending to 0, the R,,’s
converge to some point 29 € D. Since f(z) is differentiable at z9, we have
an estimate of the form

f(z) = f(20)

Z— 20

—f,(ZO) Sgnv ZEan

where €, — 0 as n — oo. Let L be the length of 9R. Then the length of
OR,, is L/2™. For z belonging to R,, we have the estimate

|f(2) = f(20) — f'(20)(2 — 20)| < enlz—20] < 2e,L/2".

From the M L-estimate and Cauchy’s theorem, we obtain

fde| = | [ () = £a0) ~ £/ (20)(z — 20)] d
8R, OR,
< (2e,L/2™)-(L/2™) = 2L%,/4™.
Hence
f(z)dz| < 4™ f(2)dz| < 2L%e,.
OR OR,
Since €, — 0 as n — oo, we must have
f(z)dz = 0.

OR

By Morera’s theorem, f(z) is analytic.

Y
A
Y

A

Exercises for IV.7

1. Find an application for Goursat’s theorem in which it is not patently
clear by other means that the function in question is analytic.

8. Complex Notation and Pompeiu’s Formula

Many results in complex analysis can be expressed very simply in terms of
the first-order differential operators

o _ 1o .0 o _119 .90
9z ~ 2laz oy’ 9z 2|az " oyl
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0
We may think of — /
dz

the 1y directions,

as an average of the derivatives of f(z) in the x and

of _ 1[of o

0z 2|0z o(iy) |

When we derived the Cauchy-Riemann equations in Chapter II, we found
two expressions for the derivative of an analytic function f(z),

of of _ of
7 - I d 7 P . .
) = 5 wd F() = -igs = g
If we take the average of these two expressions for f'(z), we obtain
i
(8.1) 7o) =5,

again provided that f(z) is analytic.
To understand the operator 0/0z, we write f = u + iv and compute
of ou ov T ou N ?ﬁ
B 2| 0y oz |

¥ = - - =

ox oy

If we equate the real and imaginary parts of the right-hand side to zero,

we obtain the Cauchy-Riemann equations for v and v. Thus the equation
of

(8.2) 25 0

is equivalent to the Cauchy-Riemann equations for v and v. Equation (8.2)

is referred to as the complex form of the Cauchy-Riemann equations.

We summarize our observations.

Theorem. Let f(z) be a continuously differentiable function on a do-
main D. Then f(z) is analytic if and only if f(z) satisfies the complex
form (8.2) of the Cauchy-Riemann equations. If f(z) is analytic, then the
derivative of f(z) is given by (8.1).

We list some rules for operating with 0/0z and 0/0z. Since these are
both first-order differential operators with constant coefficients, they are
linear,

0 _of g 0 _of Jg
52‘(0,f+bg) = (Lg“{‘b&, &(dfﬁ‘bQ) = a5§+b82’
and they satisfy the Leibniz rule,
ag of 0 .09 8f
(fg) ~ 95 e = footags

The z—derlva.tlve and the z—derlvatlve are related to each other by

of _of of _of
9z 0z’ 0z 9z’
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These formulae can be verified by writing f = u + iv, f = u — iv, and
carrying out the calculations.

The Taylor series expansion of a smooth function f(z) at zg, through
only the linear terms, is given by

£(2) = Fz0) + A (z0)(z — 20) + ok (20) (T 7) + O (12— 20,

where the “big oh” term is a remainder term bounded by C|z — 29|%. The
complex Taylor expansion can be derived from the usual Taylor expansion
by substituting the definitions and calculating. It can also be derived by
observing that it suffices to check the formula for the three functions 1,
z — zp, and z — 2o.

As an application of Taylor’s formula, we derive the complex form of the
formula for the tangent vector to a curve. Let f(z) be a smooth function,
and let y(¢) be a smooth curve terminating at v(0) = z9. From the linear
Taylor series approximation we have

0 0 S
FOE)~F((0)) = T (20) (1(0)—20)+ 22 (20) (7T — 20) +O (Ir(1) — 20)
Dividing by ¢ and taking the limit as ¢ — 0, we obtain

of of

(8.3) (fo)(0) = 5(20)7'(0) + gg(zo)m-

We use this formula to show that conformal maps are analytic.

Theorem. Let f(z) be a continuously differentiable function on a do-
main D. Suppose that the gradient of f(z) does not vanish at any point
of D, and that f(z) is conformal. Then f(z) is analytic on D, and f'(z) # 0
on D.

To prove this, fix a point zp € D, and consider the straight line y(¢) =
z0+te??, 0 <t < ¢, terminating at zp with tangent €. By (8.3), the image
curve f o+ has tangent at f(z¢) given by

of of

(fov)(0) = gz(zg)eie + b—g(zo)e_w.

The condition on the gradient guarantees that this is not identically zero.
In order for f(z) to preserve angles at zg, the difference in the arguments
of (f ov)'(0) and +'(0) must be constant, independent of 8. Hence the
argument of

(f 2v)'(0) _ of of —240
~7(0) = 3, (20) + 20)e
must be independent of #. However, this occurs only when 9f/0z = 0.

Hence f(z) is analytic on D. The gradient condition implies that f'(z) =
0f/0z # 0, and the theorem is established. Note that this theorem could
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as well be proved using x and y derivatives rather than z and z derivatives.
However, the complex notation makes the proof more transparent.

For the case of complex line integrals, Green’s theorem yields the follow-
ing formula, which can be regarded as an extension of Cauchy’s theorem
to arbitrary smooth functions.

Theorem. If D is a bounded domain in the complex plane with piecewise
smooth boundary, and if g(z) is a smooth function on D U 0D, then

(8.4) /aD z)dz = 21// = dz dy.

To see this we replace dz by dx + i dy and apply Green’s formula:

/ gd:r+/ zgdy~//<a—g——>dxdy:2z// — dx dy.
8D 8D oz Oy

Note that if g(z) is analytic on D, then 0g/0z = 0 on D, so the integral
over D vanishes, and we obtain Cauchy’s theorem.

Cauchy’s integral formula can also be extended to apply to arbitrary
smooth functions.

Theorem (Pompeiu’s Formula). Suppose D is a bounded domain with
piecewise smooth boundary. If g(z) is a smooth complex-valued function
on D U OD, then

(85) g(w) = 21 /aDZ_ - —// azz- drdy, weD.

Pompeiu’s formula is established by the same argument as was used
in Section 4 to establish Cauchy’s integral formula, except that now the
correction term appears in the calculation. Let D, be the domain obtained
from D by punching out a disk centered at w of radius €. We apply the
complex version (8.4) of Green’s theorem to the function g(z)/(z —w). For
this, note that

0 [ g9(2) dg 1 0 1 dg 1
= = < — = —= D.,
8Z<z—w) ozz—w Joz\z-w 0zz—w’ 2

so that by (8.4),

g(z
(8.6) /aD P dz = 2// 822— dz dy.

The singularity of 1/(z — w) at z = w is absolutely integrable:

1 27 1 1
// drdy = / / —-rdrdf = 27 < oo.
|z—w|<1 .Z_wi 0 o T
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Hence the area integral in (8.6) over D, tends to the (improper) area inte-
gral over D as € — 0. The boundary integral in (8.6) has the form

/8D€ Zg(_zz)udz = /M) —zg%dz — /|z—-w|=5 zgﬁzzudz

If we parametrize the circle |z — w| = €, we obtain for the integral on the

right
27
/ 9(z) dz = z/ g(w + ge*?) db.
lz—w|=e £ — W 0

This tends to 2wig(w) as € — 0, since g(z) is continuous at w. Thus if we
let € — 0 in (8.6), we obtain

/ 9(2) dz — 2mig(w) = 2i // dx dy,
oD 2 — W 8zz—

which is equivalent to (8.5).

The formula (8.5) is also known as the Cauchy-Green formula, since it
is proved using Green’s theorem. The formula can be regarded as Cauchy’s
integral formula with a correction term added to account for the fact that
g(z) may not be analytic. If g(z) is analytic on D, it reduces to the Cauchy
integral formula (4.1) for g(z).

Exercises for IV.8

1. Show from the definition that

0 0 0 _
Ez-l, EZZZO 5;;:—0,

2. Compute 35 (az + bzZ + ¢z?). Use the result to determine where

az?® + bzz + cz? is complex-differentiable and where it is analytic.
(See Problem 11.2.3.)

3. Show that the Jacobian of a smooth function f is given by

of1?  |of|?
Jo= |2 - |E
0z 0z
4. Show that
02 02 02
+ = 4
ox2 = Oy? 020z

Deduce the following, for a smooth complex-valued function h.
(a) h is harmonic if and only if 82h/820z = 0.

(b) h is harmonic if and only if 8h/0z is analytic.

(¢) h is harmonic if and only if Oh/3Z is conjugate-analytic.
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10.

(d) If A is harmonic, then any mth order partial derivative of A is
a linear combination of 8™h/0z™ and 0™h/0Z™

. With dz = dz — idy, show for a smooth function f(z) that

_of of
df = 5-dz + 5-dz

Show that if D is a domain with smooth boundary, and if f(z) and
g(z) are analytic on D U 8D, then

an( z:2z//f d:z:dy

Compare this formula with Exercise 1.4.

Show that the Taylor series expansion at zg = 0 of a smooth function
f(z), through the quadratic terms, is given by

fz) = F(0) + —(O)z + ——(0)_

1 82 f 52 f

L O]z + =02 + 0 (121*).

22(0) 249

Establish the following version of the chain rule for smooth complex-
valued functions w = w(z) and h = h(w):

a(how) _ 8h8w Oh Ow
0z ow 0z 8w 9z’
9 oy - DhOw h0w
0z Oow 0z Ow 0z

Show with the aid of the preceding exercise that if both h(w) and
w(z) are analytic, then (h o w)(z) is analytic, and (h o w)'(z) =
B (w(2))w'(2).

Let g(z) be a continuously differentiable function on the complex
plane that is zero outside of some compact set. Show that

g(w) = ——// dz dy, w € C.
Bzz-

Remark. 1f we integrate this formally by parts, we obtain

_ %//(;g(z) %(z_lw>dxdy.

Thus the “distribution derivative” of 1/(n(z — w)) with respect to z
is the point mass at w (“Dirac delta-function”), in the sense that it
is equal to 0 away from w, and it is infinite at w in such a way that
its integral (total mass) is equal to 1.
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Power Series

In this chapter we show that the analytic functions are exactly the functions
that can be expanded in a convergent power series about any point. Since
power series can be treated very much as polynomials, this provides a
powerful tool for dealing with analytic functions. In Sections 1 and 2 we
review infinite series and series of functions. Sections 3 through 6 contain
the basic material on power series. In Section 7 we use power series to
show that the zeros of an analytic function are isolated. This leads to the
uniqueness principle for analytic functions. Section 8 contains a formal
definition of analytic continuation, which can be omitted at first reading.

1. Infinite Series

In this section we review some basic material on infinite series of complex
numbers. In the next section we provide some background material on
sequences and series of functions. The reader may wish to skip to Section 3
and refer to the background sections only when necessary.

A series > 77, ax of complex numbers is said to converge to S if the
sequence of partial sums {S;}, defined by Sip = ag + --- + ax, converges
to S. For notation, the sum S of the series is denoted by ZzO:o ap, Or
simply by > ak.

Any statement concerning series can be reinterpreted as a statement
about sequences, by phrasing the statement in terms of the sequence of
partial sums of the series. For instance, we know that if s,, — s and t,, — t,
then s, +t, — s+t. If we apply this statement to the partial sums of series,
we conclude that if > ar = A and ) by = B, then ) (ax + bx) = A+ B.
Similarly, since s,, — s implies cs, — cs, we deduce that if > ar = A,
then > cay = cA. Thus taking limits of sequences is a linear operation,
and this implies that summing series is also a linear operation.

If the ri’s are positive real numbers, then the partial sums Sx = ro +
.-+ 7 form a monotone increasing sequence. Since a monotone sequence
of real numbers converges if and only if it is bounded, we see that a series of

130
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positive numbers converges if and only if the partial sums are bounded. If
0 < ax < g, and if the partial sums of > ry are bounded, then the partial
sums of ) ay are bounded by the same bound. This observation leads to
the following convergence test for series with positive terms.

Theorem (Comparison Test). If 0 < ax < rg, and if > ry converges,
then Y ax converges, and ) ax < > T.

The terms of a series can be recovered from the partial sums, by a, =
Sk — Sk—_1- Suppose the series Y a; converges to S. Then Sy converges
to S as k — o0, and also Six_; converges to S as kK — oco0. Hence ap — 0 as
k — oo. This simple necessary condition provides a useful screening test
for convergence.

Theorem. If >  ay converges, then ar, — 0 as k — oc.

Example. The most important series for us will be the geometric series
> om0 2*. The kth partial sum of the geometric series is given by

1 — k+1
Sp = 1+z4+224+. 428142k = £ , z # 1.

To see this, we multiply and divide the sum by 1 — z, and we note that the
numerator telescopes:

11—z

(1—2)Sy = 1—z+2z—224-- 4 2F 71— 2F 42k k1 — 1 _ 2L
If |z] < 1, then 21 — 0 and S — 1/(1 — z) as k — oco. Hence
o0
1
SH- L et
1—=2
k=0

On the other hand, if |z| > 1, then the kth term z* does not converge to 0,
so that the series does not converge.

The series Y a is said to converge absolutely if > |ax| converges.
Thus for a series of positive terms, convergence and absolute convergence
are the same. There are convergent series that are not absolutely conver-
gent. (See Exercises 4 and 5.) However, every absolutely convergent series
Is convergent.

Theorem. If)  aj converges absolutely, then Y ay converges, and

o0
< ) lal.
k=0

o0

(1.1)

ag

k=0

The proof is easy, modulo a little trick, which is to express Reay as a
difference Rear = (Reay + |ax|) — |ax|. Since |Reax| < |ak|, we have
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0 < Reay + |lag| < 2|ax|. Hence > (Rear + |ak|) is a series of non-
negative real numbers. Since its partial sums are bounded, by 2> |ak|,
the series converges. Now »_ Reay is the difference of two convergent se-
ries, Y (Reag + |ax|) and > |ak|, and so > Reajr converges. Similarly,
> Im ay converges, and consequently > aj converges. For each N we have
|Zk _o0 @kl <> p_olak|- Letting N — oo, we obtain the estimate (1.1).

Example. The geometric series converges absolutely when |z| < 1, and

x o0 1
k k
E ¢ < E z|® = , < 1.

k=0
This leads also to a useful estimate for the difference between the partial
sums of the geometric series and the full sum. From

‘1—z

o > Sn+l
(12) E _ Z Zk — Zn+IZZ] —
k=n+1 7=0
we obtain
n +1
k |z|n
z , zl <1
il—z 2 myr U

k=0

Exercises for V.1

1. (Harmonic Series) Show that
En: 1 > logn
k P ()
k=1

Deduce that the series _ 1 does not converge. Hint. Use the esti-
mate

1 k+1 1

- > / —dzx.

k k x

2. Show that if p < 1, then the series > - ; 1/kP diverges. Hint. Use
Exercise 1 and the comparison test.

3. Show that if p > 1, then the series Y .- ; 1/kP converges to S, where

"1
3

k=1

1

< —
(p — 1)nP~1

1 ko dx
Hint. Use the estimate — < / —_
kP Jg1 2P
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4. Show that the series

0
(—1)F 1 1 1
= 11— -4+ —Z 4...
]cz::l k 237 1"

converges. Hint. Show that the partial sums of the series satisfy
S <S3<8S5<---and Sy > 84> 8> ---.

5. Show that the series

] 1 1 1 1 1 1 1 1
3Tty tT i e T Tt
converges to 35/2, where S is the sum of the series in Exercise 4.
(It turns out that S = log2.) Hint. Organize the terms in the series
in Exercise 4 in groups of four, and relate it to the groups of three
in the above series.

6. Show that >

diverges while > converges.

1
klog k(log k)2
7. Show that the series Y ax converges if and only if Z:z; ay, tends
to 0 as m,n — 00. Remark. This is the Cauchy criterion for
series.

2. Sequences and Series of Functions

Let {f;} be a sequence of complex-valued functions defined on some set E.
We say that the sequence {f;} converges pointwise on FE if for each point
z € E the sequence of complex numbers {f;(z)} converges. The limit f(z)
of {f;(x)} is then a complex-valued function on E.

Example. The sequence of functions f;(z) = z7, 0 < z < 1, converges
pointwise on the unit interval to the function f(z) defined on the unit
interval by f(z) =0 for 0 <z <1 and f(1) = 1. Note that the pointwise
limit of a sequence of continuous functions need not be continuous.
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Example. We define a sequence of “tent functions” g; on the unit interval
by g,(z) = j2x for 0 < z < 1/j, g;(z) = 2j — j%x for 1/ <z < 2/j, and
gj(x) =0 for 2/j < x < 1. The height of the jth tent is j, and the width
of the base is 2/7, so that the area under the tent is fol gj(z)dr =1. On
the other hand, the sequence of functions g;(x) converges pointwise to 0
on the unit interval, and the integral of the pointwise limit is O.

To guarantee that the limit of the integrals of a sequence of functions
is the integral of the limit, we must require that the functions converge
in some stronger sense than pointwise. Toward this goal we introduce the
notion of uniform convergence. We say that the sequence {f;} of functions
on E converges uniformly to f on E if | f;(z) — f(z)| < ¢j forallz € E,
where £; — 0 as j — oo. We may regard €; as a worst-case estimator for
the difference f;(z) — f(z), and usually we take £; to be the supremum
(maximum) of |f,(z) — f(z)| over x € E,

e; = sup |fy(z) — f(2)]-
zeE

Note that if { f;} converges uniformly to f on E, then it converges pointwise
to f on E.

7N\

N
\ y=£x

e-tube about graph of y = f(x), | f(x) - ]j-(x)| < e

In the two examples above, the sequences do not converge uniformly. In
the first example the worst-case estimator is £; = maxo<z<1 27 =1, which
does not converge to 0. In the example of the sequence of tent functions,
the worst-case estimator is worse. It is the height of the tent, which is
£ i = _] — +00.

It turns out that with uniform instead of pointwise convergence, the two
theorems we desire are valid: (1) a uniform limit of continuous functions
is continuous, and (2) an integral of a uniform limit is the limit of the
integrals. We state the theorems more precisely.

Theorem. Let {f;} be a sequence of complex-valued functions defined on
a subset E of the complex plane. If each f, is continuous on E, and if { f;}
converges uniformly to f on E, then f is continuous on E.
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Theorem. Let vy be a piecewise smooth curve in the complex plane. If
{f;} is a sequence of continuous complex-valued functions on vy, and if { f;}
converges uniformly to f on vy, then jl7 fj(2)dz converges to f7 f(2)dz.

The first theorem above on the continuity of a uniform limit has a stan-
dard formal proof, which we omit. The second theorem above on the limit
of the integrals is an easy consequence of the M L-estimate. Indeed, sup-
pose { f;} converges uniformly to f on . Let €; be the worst-case estimator
for f; — f on v, so that |f; — f| < €; on v, and let L be the length of 4.
Then the M L-estimate gives

/yfj(z)dz—fyf(z)dz

and this tends to 0, since the f;’s converge uniformly to f. Hence [ f;dz
tends to [ fdz.

Now we turn to series of functions. Let ) g;(x) be a series of complex-
valued functions defined on a set E. The partial sums of the series are the
functions

S EjL7

Sa(z) = D g;(@) = go(x) +g1(x) +- + gn(2).

We say that the series converges pointwise on F if the sequence of partial
sums converges pointwise on E, and the series converges uniformly on £
if the sequence of partial sums converges uniformly on E. The following
criterion for uniform convergence of a series of functions is extremely useful.
In fact, it is the only test for uniform convergence of series that we will ever
need.

Theorem (Weierstrass M-Test). Suppose My > 0 and ) M) con-
verges. If gi(z) are complex-valued functions on a set E such that |gi(z)| <
My for all z € E, then ), gx(z) converges uniformly on E.

The proof is straightforward. For each fixed z, the estimate for gi(x)
shows that the series Y gx(z) is absolutely convergent, and ) |gk(z)| <
> Mj. By the theorem in Section 1, the series Y gx(z) converges to some
complex number g(z), and by (1.1), |g(z)| <> |gk(z)| < > M. The same
estimate, applied to the tail of the series, shows that

90~ 5.0 = | X a0 < X Mo
k=n+1 k=n+1

If we set £, = D peny1 Mk, then €, — 0 as n — oo, and the estimate
shows that the partial sums S, (z) converge uniformly on E to g(z).
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Example. For the geometric series

oo 1

k = ——
_S_ z T |z] <1,
k=0

we have from (1.2) that

zn+1

?

‘_fi—z _ 8,(2)

1—2

which tends to +00 as z — 1. Hence the partial sums do not converge
uniformly for |z| < 1. However, suppose we fix a radius r < 1. Define M =
r®. Then Y My converges, and |2¥| < My for |z| < r. By the Weierstrass
M-test, " z* converges uniformly for |z| < r. Thus the geometric series
converges uniformly on each disk {|z| < r}, for each r < 1, but it does not
converge uniformly on the disk {|z| < 1}.

Now we return to analytic functions. We begin by proving that a uniform
limit of analytic functions is analytic.

Theorem. If {fi(z)} is a sequence of analytic functions on a domain D
that converges uniformly to f(z) on D, then f(z) is analytic on D.

This can be proved using the Cauchy integral formula. An easier way to
see it is to apply Morera’s theorem. Since analytic functions are continuous,
and the limit of a uniformly convergent sequence of continuous functions
is continuous, f(z) is continuous. Let E be a closed rectangle contained
in D. By Cauchy’s theorem, | 55 Jx(2)dz = 0 for each k. From the theorem
above we obtain in the limit that [, f(z)dz = 0. By Morera’s theorem,

f(z) is analytic.

Theorem. Suppose that fx(z) is analytic for |z — z9| < R, and suppose
that the sequence {fx(z)} converges uniformly to f(z) for |z — z9| < R.
Then for each r < R and for each m > 1, the sequence of mth derivatives

{f,gm)(z)} converges uniformly to f(™(z) for |z — zo| < 7.

To prove this, suppose €, — 0 are such that |fix(2) — f(2)| < &k for
|z — 20| < R. Fix s such that r < s < R. The Cauchy integral formula for
the mth derivative of fr(z) — f(z) on the disk |z — z¢| < s yields

)y sy £(€) = £(0) )
AO@ e = g | R ealsr
If | — 29| =s and |z — 29| < r, then |( —z| > s —r, and so
fe(Q) — £(Q) €k
(=21 | = =
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From the M L-estimate, we obtain

!
f,ﬁm)(Z) _f(m)(z) < ;n—ﬂ—(s—_—ic)?I 21s = pg, |z — 20| < 7.
Since pr — 0 as kK — o0, we obtain uniform convergence of the mth deriva-
tives for |z — zo| < 7.

We say that a sequence {fx(z)} of analytic functions on a domain D
converges normally to the analytic function f(z) on D if it converges
uniformly to f(z) on each closed disk contained in D. It is easy to see
that this occurs if and only if {fx(z)} converges to f(z) uniformly on each
bounded subset E of D at a strictly positive distance from the boundary
of D. (See Exercises 4 and 5.) Since any closed disk contained in D can
be dilated to a larger disk contained in D, we can apply the preceding
theorem, and we obtain the following.

Theorem. Suppose that {fx(z)} is a sequence of analytic functions on
a domain D that converges normally on D to the analytic function f(z).

Then for each m > 1, the sequence of mth derivatives { f,im) ( z)} converges
normally to f(™(z) on D.

Exercises for V.2

1. Show that fi(z) = 2¥/(k+ z2*) converges uniformly to 0 on [0, c0).
Hint. Determine the worst-case estimator €5 by calculus.

2. Show that gx(z) = z¥/(1 + z*) converges pointwise on [0, c0) but
not uniformly. What is the limit function? On which subsets of
[0, 00) does the sequence converge uniformly?

3. Show that fi(z) = z*/k converges uniformly for |z| < 1. Show that
fi.(z) does not converge uniformly for |z| < 1. What can be said
about the uniform convergence of f; (2)?

1 zk .
4. Show that E BTk converges uniformly for —oco < z < +00.
5. For which real numbers z does 1_a* converge?
) w a S E —— 7
k1+ 22k ©
ok

1 .
6. Show that for each € > 0, the series E PR converges uni-
x

+
formly for £ > 1 + €.

7. Let a, be a bounded sequence of complex numbers. Show that
for each € > 0, the series 270;1 a,n~? converges uniformly for
Rez > 1+ ¢. Here we choose the principal branch of n™%.
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k
z
8. Show that Z 72 converges uniformly for |z| < 1.

k
9. Show that Z % does not converge uniformly for |z] < 1.

10. Show that if a sequence of functions {fx(z)} converges uniformly
on E; for 1 < j < n, then the sequence converges uniformly on the
union E = FE{UE,U---UE,.

11. Suppose that E is a bounded subset of a domain D C C at a positive
distance from the boundary of D, that is, there is 4 > 0 such that
|z—w| > 6 for all z € D and w € C\D. Show that E can be covered
by a finite number of closed disks contained in D. Hint. Consider
all closed disks with centers at points (m +ni)é/10 and radius 4/10
that meet E.

12. Let f(z) be analytic on a domain D, and suppose |f(z)| < M for all
z € D. Show that for each § > 0 and m > 1, |f(™)(2)| < m!M/6™
for all z € D whose distance from 0D is at least §. Use this to
show that if {fx(2)} is a sequence of analytic functions on D that
converges uniformly to f(z) on D, then for each m the derivatives
f,gm)(z) converge uniformly to f(™(z) on each subset of D at a
positive distance from 0D.

3. Power Series

A power series (centered at zp) is a series of the form Y 7o ax(z — 29)F.
By making a change of variable w = z — 29, we can always reduce to the
case of power series centered at z = 0. The main result on convergence of
power series is the following.

Theorem. Let 5 ayz* be a power series. Then thereis R, 0 < R < +oo0,
such that 3 axz* converges absolutely if |z| < R, and Y axz* does not
converge if |z| > R. For each fixed r satisfying r < R, the series 5" a)2*
converges uniformly for |z| < r.

-<«—— diverges

don’t know

;, converges

converges uniformly

We call R the radius of convergence of the series }_ axz*. The radius
of convergence depends only on the tail of the series. If we alter a finite
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number of coefficients of the series, the radius of convergence remains the
same.

For the general case of a power series S ax(z — z0)¥, the domain of
convergence is a disk |z — 29| < R. The series diverges if |z — z9| > R, and
anything can happen when |z — 29| = R.

For the proof of the theorem, note first that if the sequence |ag|rF is
bounded for some value r = 7o, then it is bounded for all r satisfying
0 <7r <rg. Wedefine R, 0 < R < 400, to be the supremum of the r’s
such that |ax|r* is bounded. Thus |at|r* is bounded if » < R, while if
r > R, then there is a sequence of terms with |ak]|rk1 — +400. In the
borderline case 7 = R, anything can happen. The sequence |ai|R* might
be bounded and it might not.

If |z| > R, then the terms ax2* do not tend to 0, so that the series does
not converge. On the other hand, suppose r < R. Choose s such that
r < s < R. Then the sequence |ax|s* is bounded, say |ax|s* < C for k > 0.
If |z| < r, then

k k
laxz®| < lag|rF = |ak|sk<§> < c(?) .

Set My = C(r/s)*. Since 3 M, converges, the Weierstrass M-test applies,
and the series Y arz* converges uniformly for |z| < r, and also absolutely
for each z. This proves the theorem.

Example. The geometric series Y z* has radius of convergence R = 1.
The series does not converge on the boundary circle |z| = 1, since the
terms do not tend to 0.

Example. The power series Y z* /k? converges uniformly for |z| < 1. This
follows from the Weierstrass M-test, with majorants M; = 1/k%. On the
other hand, if > 1, then ¥ /k? — oo as k — oco. Thus the series does not
converge for |z| > 1, and the radius of convergence of the series is R = 1.

Example. The series

(o]
(1% o L2 L4 6
(3.1) D At = -G g
k=0
becomes a geometric series if we set w = —22/2,

— (=1)* o —
Z k¢ = Zw :
= 2 k=0

The series converges precisely when |w| < 1, that is, when |22?| < 2. The
radius of convergence is thus R = v/2. The series converges to 1/(1 —w) =
2/(2 — 22).
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Example. The series Y k*z* has radius of convergence R = 0. It converges
only for z = 0, since k*r* — +o0 for all r > 0.

Example. The series Y k~%2* has radius of convergence R = +oo. It
converges for all z.

The partial sums of a power series are polynomials in 2z, and in particular
they are analytic functions. From the convergence theorem of Section 2,
we obtain the following.

Theorem. Suppose ) arz* is a power series with radius of convergence
R > 0. Then the function

O
= Zakzk, |z] < R,
k=0

is analytic. The derivatives of f(z) are obtained by differentiating the series
term by term,

o0 o0
= ) kax2®7',  f(2) = ) k(k—Daxz*"%,  |2| <R,
k=1 k=2

and similarly for the higher-order derivatives. The coefficients of the series
are given by

1
(3.2) o = fP0), k>0

The formula for the coefficient a; is obtained by differentiating & times
the series for f(z) and plugging in z = 0.

Example. By differentiating the representation of 1/(1 — z) as a geometric

series, we obtain a power series representation of 1/(1 — z)?,

o0

(1—z)2 Zkzk ' = Z(m+1)zm, |z| < 1.

m=0

On account of the uniform convergence of power series on subdisks of
radius strictly smaller than R, a power series can be integrated term by
term. Thus if Y a x2* has radius of convergence R, then

/ V(akg Zak/ C d¢ = k+1 LR+ lz| < R.
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Example. If we integrate the geometric series term by term, we obtain
2 dC z 0
—Log(1 —2) = —1 = kd

0 4
-3 — s+ T4 <l
3 4

Making the substitution w = 1 — z, we obtain a series expansion for Log w
centered at w =1,

Logw = Z-(———%k—ti(w_l)k
k=1
:(w_l)_(w—1)2+(wgl)?’_(wzl)‘l_*__”’ |w_1|<1'

> diverges for lw—1|> 1

Now we turn to two formulae for determining the radius of convergence of
a power series from its coefficients. The first of these is based on the ratio
test. It is especially convenient for determining the radius of convergence
of many series that arise as solutions of linear differential equations.

2
/X converges for jlw—1| < 1
U

Theorem. If |ax/ary1| has a limit as k — oo, either finite or +oo, then
the limit is the radius of convergence R of 3 ax2*,

a
R = lim |—=

k—oo

Or41

To see this, let L = lim |ax/ag41|- If r < L, then |ag/ak4+1| >  eventu-
ally, say for k > N. Then |ax| > rlags+:1] for K > N, and

lan|™Y > lanp [PV > Jango|rV 2 > e

Hence the sequence |ax|r* is bounded. From the definition of R we have
7 < R, and since r < L is arbitrary, we also have L < R.

Suppose next that s > L. Then |ax/ax+1]| < s eventually, say for k > N.
Then |ak| < slax+1| for £ > N, and

|aN|3N < langq|sVH < |a,N+2|3N+2 < ...
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Hence the terms ax2* do not converge to 0 for |z| > s, so that the series
does not converge, and s > R. Since s > L is arbitrary, we also have
L > R. We conclude that L = R.

Example. For the series 5" kz*, the ratio test gives

k
k+1

a
k — 1.

Ok41

Hence the radius of convergence is R = 1.

k
z
Example. For the series Z e the ratio test gives

k+ 1)!
= (—_l:'—) = k+1— +o0.

Qg

Ar+1

Hence the radius of convergence is R = +00.

The second formula is based on the root test.

Theorem. If {/|ax| has a limit as k — oo, either finite or +o0o, then the
radius of convergence of 3" ayz* is given by

(3.3) R =

1
lim */]ag|

If - > 1/lim ¥/|ax|, then {/|ax|r > 1 eventually, so that |ag|r® > 1
eventually, the terms of the series 3~ axz* do not converge to 0 for |z| = r,
and r > R. On the other hand, if r < 1/lim {/|ax|, then {/|ax|r < 1 even-
tually, so that |ag|r® < 1 eventually, the sequence |ai|r® < 1 is bounded,
and from the definition of R we have r < R. It follows that (3.3) holds.

Example. For the series 3 kz*, the root test gives
R = 1/limVk == 1.

There is a more general form of the formula (3.3), called the Cauchy-
Hadamard formula, that gives the radius of convergence for any power
series in terms of a lim sup. Recall (Section II.1) that the lim sup of a
sequence {s,} is characterized as the number S, —co < S < 400, with
the property that if ¢ > S, then only finitely many terms of the sequence
satisfy s,, > t, while if ¢ < S, then infinitely many terms of the sequence
satisfy s, > t. If the sequence s, has a limit, then the lim sup of the
sequence coincides with the limit. However, every sequence has a lim sup.
The Cauchy-Hadamard formula is obtained simply by replacing the limit
in (3.3) by a lim sup,

(3.4) R =

1
limsup */|ax|
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The proof is identical to the proof given above, except that the character-
izing property of the lim sup is used.

Example. We return to the series (3.1) treated earlier. This can be ex-
pressed as a power series Y axz®, where ar = (—1)%¥/2/2%/2 if k is even,
and ay = 0 if k is odd. Thus ¥/|ax| is 1/v/2 if k is even and 0 if k is odd.
The lim sup of this sequence is 1/v/2. By the Cauchy-Hadamard formula,
the radius of convergence of the series is \/5, as before.

Exercises for V.3

1. Find the radius of convergence of the following power series:

i . i gk Lk i Kk i
(a) ) 27z (d) ), == (8) D T75m%?
= Pl o k:11+2k
2k 2, k% >
(b)Y 52" @ =17 (0) D (log k)*/22*
k=0 Pl k=3
ok N Ny P
(c) Y Kz ) > AR LE (i) Lk
k=1 k=1 k=1
2. Determine for which z the following series converge.
o o0 o0
() Y (=1 () D 2™M=-™ (¢) }_ n"(z—3)"
k=1 m=0 n=1

= (z—1)k = (z+9)™ = 2" :
my L @y EE > e

3. Find the radius of convergence of the following series.

0, 9]

(a) 223" =2+ 4+ 422784
n=0

b)) S =2+l

p prime

4. Show that the function defined by f(z) = Zz"! is analytic on

the open unit disk {|z] < 1}. Show that |f(rA)] — +o0c asr —1
whenever ) is a root of unity. Remark. Thus f(z) does not extend
analytically to any larger open set than the open unit disk.

5. What functions are represented by the following power series?

(a) i kz*, (b) S0, k2.
k=1
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6.

8.

V  Power Series

Show the series Y apz®, the differentiated series Y kaxz®~!, and

. . ag
the integrated series E z
k+1
vergence.

k+1 511 have the same radius of con-

Consider the series
o0
3@+ (—1)F)" 2~
k=0

Use the Cauchy-Hadamard formula to find the radius of convergence
of the series. What happens when the ratio test is applied? Evaluate
explicitly the sum of the series.

Write out a proof of the Cauchy-Hadamard formula (3.4).

4. Power Series Expansion of an Analytic Function

We have seen that power series expansions Y ax(z — 20)* are analytic inside
the disk of convergence {|z — z9| < R}. It is an important and far-reaching
fact that conversely, any function analytic on a disk can be expanded in a
power series that converges on the disk.

Theorem. Suppose that f(z) is analytic for |z — z9| < p. Then f(z) is
represented by the power series

(4.1)

where

(4.2)

f(z) = ) ar(z—20)F, z — 20| < p,
k=0

% (z0)

o k=20

ag

and where the power series has radius of convergence R > p. For any fixed
r, 0 <r < p, we have

(4.3)

ar = ! JQ———dC, k>0.

278 Jic—zo=r (€ — 2z0)*F!

Further, if | f(z)| < M for |z — 29| = r, then

(4.4)

M
o] < =, k>0
T

The proof amounts to expanding the integrand in the Cauchy integral
formula as a geometric series and using the uniform convergence of the
series to integrate term by term. We assume for simplicity that zg = 0.
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Fix z such that |z] < r. For |(| = r we have

1 1 . 2k
(—2 cl—z/c__z(> ch“’

k=0

where the series converges uniformly for |(| = r. Hence

_ 1 o . 1
1) = o /|<|=rC—de - 2m |<|=T<Zf C’“*l) %

1 f(¢)
~ o (/IC— Ck+1 dC) Zakz ’

where ay is given by (4.3) with 2o = 0. Thus f(z) is represented by a power
series, which converges whenever |z| < r. Since r < p is arbitrary, the
radius of convergence of the power series satisfies R > p. The formula (4.2)
for aj coincides with formula (3.2), which was obtained by differentiating
the power series k times and substituting z = 2p. The estimates (4.4) are
another version of the Cauchy estimates already derived in Section IV.4.
Recall that they are obtained by applying the M L-estimate to the integral
n (4.3).

Example. The exponential function e* has power series Y a;2*, where

1 d*k 1 1
akzgg-z—k-z :HZ :E
! o ! —o !
Hence
i-’z— PN A
— k! 2! 3!

Since e? is entire, the radius of convergence of the power series is R = +00.
Similarly, the entire functions sin z and cos z have power series expansions
with infinite radius of convergerce, given by

o0
) B (_1)k22k+1 B 23 5
S Dircyny R
k=0
o0
(_1)kz2k Z2 24
= A A T AN N A
cosz kz_o (2k)! o T

We state for emphasis two results that are immediate consequences of
the theorem. The first is that an analytic function on a disk is completely
determined by its value and the values of its derivatives at the center of the
disk. This is because the power series representing f(z) is determined by
the derivatives of f(z) at the center z¢ via the formula (4.2) for the power
series coefficients.
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Corollary. Suppose that f(z) and g(z) are analytic for |z — zo| < r. If
) (20) = g'¥)(20) for k > 0, then f(2) = g(2) for |z — zo| < r.

The second corollary provides another method for determining the radius
of convergence of a power series. The slogan form of the method is: The
radius of convergence is the distance to the nearest singularity. The formal
statement is as follows.

Corollary. Suppose that f(z) is analytic at zg, with power series expan-
sion f(z) =Y ax(z — 20)* centered at zy. Then the radius of convergence
of the power series is the largest number R such that f(z) extends to be
analytic on the disk {|z — zo| < R}.

Note that the analytic extension of f(z) to this largest disk is unique, by
the first corollary.

Example. The function 1/(1 + 2?) is a beautiful function of the real vari-
able z, which is expandable as a real power series about any point on the
real axis. Yet the power series about x = 0, given by

1
1+ z2

has radius of convergence only 1. The reason is that considered as a function
1/(1 + 2?) of a complex variable z, the function has singularities at the
points +i. Thus the radius of convergence is necessarily R = 1, which is
the distance from 0 to the nearest singularities at +4. This example teaches
us that to understand real-valued functions of a real variable, we must look
into the complex plane.

= 1—z?+2* 28+,

—i

singularities at + i

Example. Consider the power series expansion of the function f(z) =
(23 —1)/(2%2 — 1) about z = 2, f(2) = 3 ar(z — 2)*. The function f(z)
is analytic in the entire complex plane except for apparent singularities at
z = £1. However, the singularity at z = +1 is illusory. If we eliminate
the common factor of z — 1 from the numerator and the denominator, we
obtain f(z) = (22 + z + 1)/(z + 1), which is analytic except at z = —1.
The apparent singularity at z = +1 is called a “removable singularity.” We
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singularity at —1, analytic at +1

will return to these in the next chapter. Since |f(z2)| — +oc0 as z — —1,
the function f(z) cannot be extended analytically to = = —1, and the
singularity at z = —1 is genuine. The largest disk centered at z = 2 to
which f(z) extends analytically is then the disk {|z—2| < 3}. Consequently,
the radius of convergence of the power series is R = 3.

Example. The radius of convergence of the power series Y ax(z — 5)* of
the function (Logz)/(z — 1) about z = 5 is R = 5. While the function
has an apparent singularity at z = 1, in fact it extends analytically to that
point. Its power series representation about z = 1 can be obtained by
dividing the power series representation of Logz by z — 1,

Log 2z 1 1 5 1 3

= 1-(z-D+2(z-1)2=(z—13+---.
— -1 +3( 12— -1+
Since the function tends to +oo as z tends to 0 from along the positive real
axis, the function cannot be extended analytically to z = 0. Thus z =0 is
a genuine singularity of the function, of a type called a “branch point,” and
the radius of the largest disk centered at z = 5 to which (Logz)/(z — 1)

extends analytically is R = 5.

Exercises for V.4

1. Find the radius of convergence of the power series for the following
functions, expanded about the indicated point.

1 .
(a) 1’ about z =1, (d) Logz, about z=1+ 2i,
Z_
1
(b) o2’ about z = 0, (e) 232, about z = 3,
© s LAl () 2= bout z = 2
© coshz’ FPOMETY B, apo = 21.

2. Show that the radius of convergence of the power series expansion
of (22 —1)/(2% — 1) about z =2 is V/7.

3. Find the power series expansion of Log z about the point z = 7 — 2.
Show that the radius of convergence of the series is R = /5. Explain
why this does not contradict the discontinuity of Log z at z = —2.
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Suppose f(z) is analytic at z = 0 and satisfies f(2) = z + f(2)%
What is the radius of convergence of the power series expansion of
f(z) about z = 07

. Deduce the identity e'* = cosz + isinz from the power series

expansions.

. Find the power series expansions of cosh z and sinh z about z = 0.

What are the radii of convergence of the series?

Find the power series expansion of the principal branch Tan~!(z)
of the inverse tangent function about z = 0. What is the radius of
convergence of the series? Hint. Find it by integrating its derivative
(a geometric series) term by term.

Expand Log(l + iz) and Log(1 — iz) in power series about z = 0.
By comparing power series expansions (see the preceding exercise),
establish the identity

1 :
Tan"'z = % Log (1 + 2z) X

2 1—1z

(See Exercise 5 in Section 1.8.)

Let a be real, and consider the branch of 2% that is real and positive
on (0,00). Expand 22 in a power series about z = 1. What is the
radius of convergence of the series? Write down the series explicitly.

Recall that for a complex number «, the binomial coefficient “«
choose n” is defined by

T (P CEHEHCEUES R

0 n n! -

Find the radius of convergence of the binomial series
2 (o
> ()=
n=0 n

Show that the binomial series represents the principal branch of the
function (1 + 2)®. For which a does the binomial series reduce to a
polynomial?

11. For fixed n > 0, define the function J,(z) by the power series

Jn(2) =) o

(_1)k Zn+2k
il

n+ k)l2nt2k
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Show that J,(z) is an entire function. Show that w = J,(2) satisfies
the differential equation

1 2
w”+—w’+(1~n—)w20.

P 2

o
Z

Remark. This is Bessel’s differential equation, and J,(z) is
Bessel’s function of order n.

12. Suppose that the analytic function f(z) has power series expansion
> an,z"™. Show that if f(z) is an even function, then a,, = 0 for n
odd. Show that if f(z) is an odd function, then a,, = 0 for n even.

13. Prove the following version of L’'Hospital’s rule. If f(z) and g(2) are
analytic, f(29) = g(29) = 0, and g(z) is not identically zero, then
im L)y £02)
2=z g(z) 2=z g'(2)
in the sense that either both limits are finite and equal, or both
limits are infinite.

14. Let f be a continuous function on the unit circle T = {|z| = 1}.
Show that f can be approximated uniformly on T by a sequence
of polynomials in z if and only if f has an extension F' that is
continuous on the closed disk {|z| < 1} and analytic on the interior
{|z| < 1}. Hint. To approximate such an F’, consider dilates F}.(z2) =
F(rz).

5. Power Series Expansion at Infinity

We say that the function f(z) is analytic at z = oo if the function g(w) =
f(1/w) is analytic at w = 0. Thus we make a change of variable w = 1/z,
z = 1/w, and we study the behavior of f(z) at z = oo by studying the
behavior of g(w) at w = 0.

If f(z) is analytic at oo, then g(w) = f(1/w) has a power series expansion
centered at w = 0,

o0
glw) = Y bw* = by +biw +byw® +bgwd +---,  jw| <p.
k=0

Thus f(z) is represented by a convergent series expansion in descending
powers of z,

b by by b 1
(5.1) f(z) = Zz—’; = b0+;1+z—2+z—§+---, 21> .
k=0

This series converges absolutely for |z| > 1/p, and for any 7 > 1/p it
converges uniformly for |z| > r.
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-«—— converges uniformly
converges
don’t know

diverges

A formula for the coefficients can be obtained by multiplying the series
by z™ and integrating term by term around the circle |z| = r. We have

/|z|=r f(2)z2™dz = /|Z|=T (Z bkz_k) ZMdz
- Zbk/ 2™ *dz = 2nibyy -

|lzl=r
Thus the coefficient by of 1/z* is given by

1
by = — f(z)z5F"1dz, k>0.

271 |z|=r

This formula should not be memorized. It will be superseded by the formula
for the coefficients of a Laurent expansion, to be derived in Chapter VI.

Example. If n > 0, the function f(z) = 1/z™ is analytic at oo, since
g(w) = w™ is analytic at w = 0.

Example. Consider the function f(z) =1/(z? + 1). In this case,

1 w?

g(w) = f(l/w) = W{ = 11z

Since g(w) is analytic at w = 0, f(z) is analytic at co. The power series for
g(w) is obtained by expanding 1/(1 + w?) in a geometric series, to obtain

O
glw) = wQZ(—l)kwmc = w w4+t w4+, lw| < 1.
k=0
Thus
xO
(—1)k+1 1 1 1 1
1 ;—2,;—— S aAtmomto kL

This expansion can also be obtained by expressing

1 1 1

1+22  221+1/22

and expanding 1/(1 + 1/2?) in a geometric series.
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Exercises for V.5

1.

Expand the following functions in power series about oo:

Z2 2
(a) z21+ 1 (b) —— (c) eV/* (d) zsinh(1/2)

Suppose f(z) is analytic at oo, with series expansion (5.1). With
the notation f(oo) = by and f’(oc0) = by, show that

fi(o0) = lim 2[f(2) — f(o0)].

Suppose f(z) is analytic at oo, with series expansion (5.1). Let
o > 0 be the smallest number such that f(z) extends to be analytic
for |2| > o. Show that the series (5.1) converges absolutely for
|z| > o and diverges for |z| < 0.

Let E be a bounded subset of the complex plane C over which area
integrals can be defined, and set

flw) = //E wly L eC\E,

w—=z

where z = z + iy. Show that f(w) is analytic at oo, and find
a formula for the coefficients of the power series of f(w) at oo in
descending powers of w. Hint. Use a geometric series expansion.

Determine explicitly the function f(w) defined in Exercise 4, in the
case that F = {|w| < 1} is the unit disk. Hint. There are two
formulae for f(w), one valid for |w| > 1 and the other for |w| < 1.
Be sure they agree for |w| = 1.

6. Manipulation of Power Series

Power series are easy to work with. For all practical purposes, power series
can be treated like polynomials. We have already seen that power series
can be differentiated term by term and that they can be integrated term by
term. Power series can also be added and multiplied, just like polynomials.

Suppose, for instance, that f(z) and g(z) are analytic at 0, with power
series representations

flz) = Zaklk, 9(z) = Zbkzk.
k=0 k=0

Then the power series of the sum f(z) + g(z) is obtained by simply adding
coeflicients,

o0

f(2) +g(2) = Z(ak+bk)z’°.

k=0
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If ¢ is a complex constant, the power series of cf(z) is obtained by multi-
plying coeflicients by c,

cf(z) = i carz”.
k=0

The formula for the coefficients of the power series of the product f(z)g(z)

is more complicated, though it is the same as for products of polynomials.
If

f(2)9(2) = > e,
k=0

then the coefficients ci are given by
(6.1) ¢t = agby +ag_1b1 +--- +aibe_1 + agbs, k> 0.

This can be justified as follows. The partial sums fn(2) = > 7_ja,2’ and
gn(2) =Y 1 o ax2® are sequences of polynomials that converge uniformly
to f(2) and g(z), respectively, in some disk centered at 0 as n — oo. Conse-
quently, f,(z)gn(2) converges uniformly to f(z)g(z) on the disk. It follows
(Section 2) that the derivatives of f,,(2)gn(z) converge to the corresponding
derivatives of f(2)g(z), and by formula (4.2), the coefficient of 2* in the
polynomial f,(z)gn(z) converges to the power series coefficient of z* for
f(2)g(z). Now the coefficients of f,(z)gn(z) are obtained by multiplying
the polynomials and gathering terms,

frn(2)gn(2) = Zajz] Za]zj = agbg + (a1bg + agb1)z + - --
3=0 =0

- (@nbo + an_1b1 + - - - + agbn) 2™ + 02",

where here the notation O(z™) is used for terms involving powers 2* for
k > m. (This is consistent with our earlier use of the “big-oh” notation.
See Exercise V1.2.6.) For k < n the coefficient of z* in this polynomial is
exactly ¢, given by (6.1). Passing to the limit as n — oo, we find that
f(2)g(z) also has power series coefficient of z* equal to ck.

The power series of a quotient f(z)/g(z) can also be effectively computed.
It suffices to compute the power series of 1/g(z). For this, we assume that
g(z) is analytic at z = 0, and we suppose for simplicity that g(0) = 1. The
power series expansion of g(z) then has the form

o0
g(Z) - 1+Zbkzk = 1+blz+b222+.-‘.
k=1
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If z is near 0, the sum Y po; bx2* is small, and we can expand 1/g(z) in a
geometric series

1 1
g(z) 1+ 2211 by 2%

The terms involving 2™ occur only in the first m + 1 summands. We
can compute the coefficients of the power series expansion of 1/g(z) by
collecting the coefficients of 2™ in each of the first m + 1 summands and
discarding the remaining summands. The procedure is justified by the
uniform convergence of the geometric series for z near 0.

Example. To find the coefficients of 2™ for m < 5 in the power series
expansion of tan z = sin 2/ cos z about z = 0, we calculate as follows, again
using the notation O(2™) for terms involving powers 2* for k > m:
1 1
cos z 1 —(22/2!) + (24/4)) + O(=29)

z2 2:4 22 Z4 2
=1+ (— T 0(z6)> + (— T 0(z6)> +0(2°)

2 4! 21 4!
= 1+ -2+ 324 +0(2%),
2 24
so that
sinz - _ (z B, (9(27)) (1 T LAV N O(zﬁ))
cos z 3! 5! 2 24
= z+ %zB + %z‘:’ +0(2").

The end result can be checked by differentiating tanz five times. Note
that tan z is an odd function, so that only odd terms appear in the power
series.

Exercises for V.6

1. Calculate the terms through order seven of the power series expan-
sion about z = 0 of the function 1/ cos z.

2. Calculate the terms through order five of the power series expansion
about z = 0 of the function z/sin z.

3. Show that
e? 1 1 3., 11

= 14222 3454 =
1+2 t5# —3¥ Tgr T3t
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Show that the general term of the power series is given by

11 (—1)"
f— —_— n — — c— CEE
an = Vg mgt g 22

What is the radius of convergence of the series?

4. Define the Bernoulli numbers B,, by

22 24 28

z
§cot(z/2) =1 —Bl—2—!— —32Z _B?,a — ...

Explain why there are no odd terms in this series. What is the
radius of convergence of the series? Find the first five Bernoulli
numbers.

5. Define the Euler numbers FE,, by
1 > E, ,
coshz n§: El ’

What is the radius of convergence of the series? Show that E, =0
for n odd. Find the first four nonzero Euler numbers.

6. Show that the coeflicients of a power series “depend continuously”
on the function they represent, in the following sense. If {f,(2)}
is a sequence of analytic functions that converges uniformly to f(2)
for |z| < p, and

fm(2) = > akm2", fz) = > ad”,
k=0 k=0

then for each k£ > 0, we have ay ,, — ar as m — 0.

7. The Zeros of an Analytic Function

Let f(z) be analytic at zp, and suppose that f(z9) = 0 but f(z) is not
identically zero. We say that f(z) has a zero of order N at 29 if f(2) =
f(z) = - = fN=Y(z) = 0, while f™)(29) # 0. In view of the for-
mula (4.2) for the power series coefficients, this occurs if and only if the
power series expansion of f(z) has the form

f(2) = an(z—20)Y +any1(z—20)V T+,

where ay # 0. We can factor out the term (z — 29)" from the power series
and write

(7.1) f(z) = (2= 20)Vh(2),

where h(z) is analytic at zp and h(zp) = an # 0. Conversely, if there is
a factorization (7.1) where h(z) is analytic at zp and h(z9) # 0, then the
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leading term in the power series for f(z) is h(20)(z — 20)", and f(z) has a
zero of order N at zg.

A zero of order one is called a simple zero, and a zero of order two is
called a double zero.

Example. The zeros of sin z are at the points nm, —o00 < n < 400, and
the derivative cos z of sin z is 41 at each of these points. Hence all zeros
of sin z are simple zeros.

Example. The monomial (z— 29)™ has a zero of order n at zg and no other
ZEros.

Example. From the power series expansion

1 1
sinz= —(z—m)+ a(z—w)‘?’ 5

we see that the function sinz + z — 7w has a triple zero at z = w. The

'(Z_’/T)5+ R

function

+1, defined to be 0 at 2z = 7, is entire and has a double zero
z—T
at z = m, since the leading term of its power series expansion is (z —m)?/3!.

A useful rule for determining orders of zeros is that the order of a zero
of a product f(z)g(z) is the sum of the orders of the corresponding zeros
of the factors f(z) and g(z). Indeed, if f(2) = an(z— 29)™ +--- has a zero
of order n at 29 and g(z) = b,,(z — 29)™ + - - - has a zero of order m at 2z,
then f(2)g(2) = anbm(z — 20)"*t™ + -+ has a zero of order m + n at z.

If f(z) is analytic at co and f(oco) = 0, we define the order of the zero of
f(z) at z = oo in the usual way, by making the change of variable w = 1/z.
We say that f(z) has a zero at z = oo of order N if g(w) = f(1/w) has
a zero at w = 0 of order N. In this case, g(w) = byw™ +byp1w™ Tt +---,
where by # 0. Thus f(z) has the series representation

by | by
f(z):z—ﬁ‘*‘z—m“F"', 2| > R,
where by # 0.
Example. The function 1/(1+ 22) has a double zero at co. Its power series
expansion, derived in Section 5, is 1/22—1/2*+- - - | which has leading term
1/22.

Example. The rational monomial 1/(z — z9)™ has a zero of order n at co.

We say that a point zg € F is an isolated point of the set E if there
is p > 0 such that |z — 29| > p for all points z € E other than 2. In
other words, zg is an isolated point of F if zg is at a positive distance from
E\{z}. If E is a set such that each point of E is an isolated point of E,
we say that the “points of F are isolated.”
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Example. If E = [-1,0]U {1/n : n > 1}, then each of the points 1/n is

an isolated point of E, while no point of the interval [—1,0] is an isolated
point of E.

1
-1 0 2 1

nonisolated points isolated points

Theorem. If D is a domain, and f(z) is an analytic function on D that
is not identically zero, then the zeros of f(z) are isolated.

The proof of this theorem breaks into two parts, an observation about
the local behavior of an analytic function near a zero, and a connected-
ness argument that depends on D being a domain. We begin with the
connectedness argument, which is deceptively subtle.

Let U be the set of all z € D such that f(™)(2) = 0 for all m > 0.
If 2o € U, then the power series expansion f(z) = 3 ax(z — 20)* has
ar = f®(z)/k! = 0 for all k > 0. Hence f(z) = 0 for z belonging to a
disk centered at zy. The points of this disk all belong to U. This shows
that U is an open set. On the other hand, if zy € D\U, then f(®)(z) # 0
for some k. Therefore, f(¥)(z) # 0 for z in some disk centered at zp, and
this disk is contained in D\U, so D\U is also open. Since D is connected,
either U = D or U is empty. If U = D, then f(z) = 0 for all z € D,
contrary to our hypothesis. Hence U is empty. Thus we conclude from the
connectedness argument that each zero of f(z) has finite order.

The closing argument is easier. If 2y is a zero of f(z), say of order N, we
can factor f(z) = (2— 29)V h(2), where h(z) is analytic at z, and h(zg) # O.
Then for p > 0 sufficiently small, we have h(z) # 0 for |z — 25| < p, and
consequently |f(2)| # 0 for 0 < |z — 29| < p. Thus f(z) has distance at
least p from any other zero of f(z), and the zeros of f(z) are isolated.

By applying the preceding theorem to f(z)—g(z), we obtain immediately
the following important result, which is also referred to as the identity
principle.

Theorem (Uniqueness Principle). If f(z) and g(z) are analytic on a
domain D, and if f(z) = g(z) for z belonging to a set that has a nonisolated
point, then f(z) = g(z) for all z € D.

Example. Once we know that sinz and cosz are entire functions that
satisfy sin?z +cos?z = 1 for all real numbers z, then necessarily sin? z +
cos?z = 1 for all complex numbers z. This follows from the uniqueness
principle, applied to f(z) = sin? z + cos? z and g(z) =1.
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The uniqueness principle has a natural extension to functions of two
complex variables, which is sometimes referred to as the principle of per-
manence of functional equations.

Theorem. Let D be a domain, and let E be a subset of D that has a
nonisolated point. Let F(z,w) be a function defined for z,w € D such that
F(z,w) is analytic in z for each fixed w € D and analytic in w for each
fixed z € D. If F(z,w) = 0 whenever z and w both belong to E, then
F(z,w) =0 for all z,w € D.

This follows from two applications of the uniqueness principle, one for
each variable. First fix 29 € E. Then F(zp,w) is analytic for w € D and
vanishes for w € E. By the uniqueness principle, F(z9,w) = 0 for all
w € D. Now fix w € D. We have shown that F(zg,w) = 0 for all 2y € E.
By the uniqueness principle, F(z,w) =0 for all z € D.

Example. As a typical application, we derive the addition formula for
the exponential function, assuming that e5** = e’e? for s and t real. The
function F(z,w) = e**t% — e®e" is an entire function of each variable for
fixed values of the other variable, and it vanishes when both the variables
are real. By the permanence principle, it then vanishes for all values of 2
and w. Thus e*1% = e®e®.

Exercises for V.7

1. Find the zeros and orders of zeros of the following functions.

241
(a) ; i 1 (d) cosz —1 (g) ef —1
1 1 —1
(b) -+ = (e) c_osiz_ (h) sinh? z + cosh? z
z oz
-1 Log
(c) z?sinz () COS#Q (i) 8% (principal value)
z z

2. Determine which of the functions in the preceding exercise are an-
alytic at co, and determine the orders of any zeros at co.

3. Show that the zeros of sin z and tan z are all simple.

4. Show that cos(z + w) = cosz cosw — sinz sinw, assuming the
corresponding identity for z and w real.

5. Show that

0 2 bid 2
/ e~z 2wt gy [T gtz z,weC, Rez > 0,

where we take the principal branch of the square root. Compare the
result to Exercise IV.3.1. Hint. Show that the integral is analytic
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10.

11.

12.

13.

14.

V Power Series

in z and w, and evaluate it for z = x > 0 and w real by making
a change of variable and using the known value /7 for z = 1 and
w=0.

Suppose f(z) is analytic on a domain D and zg € D. Show that if
(™) (25) = 0 for m > 1, then f(z) is constant on D.

Show that if u(x, y) is a harmonic function on a domain D such that
all the partial derivatives of u(z,y) vanish at the same point of D,
then u(x,y) is constant on D.

With the convention that the function that is identically zero has a
zero of infinite order at each point, show that if f(z) and g(z) have
zeros of order n and m respectively at zg, then f(z) + g(z) has a
zero of order k > min(n, m). Show that strict inequality can occur
here, but that equality holds whenever m # n.

Show that if the analytic function f(z) has a zero of order N at z,
then f(z) = g(z)" for some function g(z) analytic near zo and

satisfying ¢'(zg) # 0.

Show that if f(z) is a continuous function on a domain D such that
f(2)N is analytic on D for some integer N, then f(z) is analytic
on D.

Show that if f(z) is a nonconstant analytic function on a domain D,
then the image under f(z) of any open set is open. Remark. This
is the open mapping theorem for analytic functions. The proof
is easy when f’(z) # 0, since the Jacobian of f(z) coincides with
|f/(2)]2. Use Exercise 9 to deal with the points where f’(z) is zero.

Show that the open mapping theorem for analytic functions implies
the maximum principle for analytic functions.

Let fn(z) be a sequence of analytic functions on a domain D such
that f, (D) C D, and suppose that f,(z) converges normally to f(z)
on D. Show that either f(D) C D, or else f(D) consists of a single
point in 0D.

A set F is discrete if every point of E is isolated. Show that a closed
discrete subset of a domain D either is finite or can be arranged in
a sequence {zj} that accumulates only on {oo} U 0D.

8. Analytic Continuation

In Chapter I we analyzed the branches of the functions y/z and log 2z by
following the values of the functions along curves in the complex plane. By
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this method we saw that these functions cannot be extended continuously to
C\{0}. We constructed Riemann surfaces to which the functions do extend
continuously, by defining branches of the functions on separate sheets and
pasting these sheets together.

In this section we develop more formally the idea of tracking an analytic
function along a path. The power series expansion of an analytic function
about a point contains complete information about the function near the
point. Rather than track only the values of the analytic function, we will
track the power series expansions of the function about points of the path
as we move along the path. We begin by observing that the radius of
convergence of a power series depends continuously on the center of the
expanslon.

Lemma. Suppose D is a disk, f(z) is analytic on D, and R(z) is the
radius of convergence of the power series expansion of f(z) about a point
z1 € D. Then

(81) |R(21) — R(Zg)| < |Zl — Zgl, 21,29 € D.

We use the characterization of R(z;) as the radius of the largest disk
centered at z; to which f(z) extends analytically. Thus f(z) does not
extend analytically to any disk containing {|z — z1| < R(z1)}, and conse-
quently R(z2) < R(z1) + |22 — 2z1|. Interchanging 2; and 22, we obtain also
R(z1) < R(z2) + |22 — 2z1|- These two inequalities yield (8.1).

Now we start with a power series Y a,(z—2)" that represents a function
f(2) near zg. We are interested in the behavior of f(z) only near zy, and
we say that the power series represents the “germ” of f(z) at zg. Let (¢),
a <t < b, be a path starting at zog = y(a). Wesay that f(z) is analytically
continuable along 7 if for each ¢ there is a convergent power series

e o]

(82) fu(2) = Y aa@®(z =) |z =) < (),

n=0

such that f,(z) is the power series representing f(z) at zp, and such that
when s is near ¢, then fs(z) = fi(z) for z in the intersection of the disks
of convergence. By the uniqueness principle, the series f;(z) determines
uniquely each of the series fs(z) for s near ¢t. It follows that the series
fo(2) is uniquely determined by f,(z). (Otherwise, we could define to to
be the infimum of the parameter values t such that f;(z) is not uniquely
determined by f,(z), and we would soon have a contradiction to the local
uniqueness assertion at ty.) We refer to fy(z) as the analytic continua-
tion of f(z) along v, where we regard f;(z) either as a power series or as
an analytic function defined near (b). Since the coefficients an(t) in (8.2)
are given by a,(s) = ft(m)('y(s))/m! for s near t, the coefficients depend
continuously on the parameter t. The preceding lemma shows that the
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radius of convergence of the power series (8.2) also depends continuously
on the parameter t. We summarize and give some examples.

Theorem. Suppose f(z) can be continued analytically along the path y(t),
a <t < b. Then the analytic continuation is unique. Further, for each
n > 0 the coefficient a,(t) of the series (8.2) depends continuously on t,
and the radius of convergence of the series (8.2) depends continuously ont.

Example. Suppose f(z) is analytic in a domain D. Then f(z) has an
analytic continuation along any path in D. Simply define f;(z) to be the
power series expansion of f(z) about «y(t).

Example. Suppose f(z) is the principal branch of /z, with series expan-
sion
F#) = 145 —1) — 2z =12+
2 8
about z = 1. Let y(t) = €%, 0 < t < 2m, be the closed path around the
unit circle starting at y(0) = 1. Then f(z) has an analytic continuation
along 7y, and the power series f;(z) in (8.2) is given explicitly by
—it/2 . —3it/2
- -
Thus the analytic continuation of f(z) around the circle is
1 1
for(2) = =1 —=(z=1D)4+=(z-1)2+---,
2 8
which is just the other branch of /.

fi(z) = e*/? 4 (z—e®)2 ...,

Now suppose f(z) is analytic at zp, and suppose that v(t), a <t < b,
is a path from zy = y(a) to z; = (b) along which f(z) has an analytic
continuation f¢(z). The radius of convergence R(t) of the power series (8.2)
varies continuously with ¢. Hence there is 6 > 0 such that R(t) > ¢ for all
t,a<t<b.

Lemma. Let f, v, and § be as above. If o(t), a <t < b, is another path
from zy to z; such that |o(t) — vy(t)| < 6 for a <t < b, then there is an
analytic continuation g;(z) of fi(z) along o, and the terminal series gy(z)
centered at o(b) = z; coincides with fp(z).
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2p

N

We can define g:(z) to be the power series expansion of f;(z) about o(t).
This is possible, since o(t) lies within the disk of convergence of f;(z). In
fact, o(s) lies inside the disk of convergence of f;(z) for s near ¢, and since
fs(2) = fi(2) for s near ¢, we see that gs(z) = g:(z) for s near ¢, and so ¢;(2)
does represent an analytic continuation. By its definition, gy(z) coincides
with fp(2) at 21 = o(b) = v(b).

Just as in Section II1.2, we can deduce from this “local” deformation
result a global deformation theorem.

Theorem (Monodromy Theorem). Let f(z) be analytic at z5. Let
Yo(t) and v1(t), a <t < b, be two paths from zy to z; along which f(z)
can be continued analytically. Suppose v¢(t) can be deformed continuously
to v1(t) by paths vs(t), 0 < s < 1, from zy to z; such that f(z) can be
continued analytically along each path ;. Then the analytic continuations
of f(z) along 9 and along -y, coincide at z;.

P\/l

4
Zp Yo

By a continuous deformation, we mean that the function (s,t) — 7s(t) is
continuous for 0 < s <1 and a <t <b. If f;.(z) denotes the analytic con-
tinuation of f(z) along s, the power series fs:(z) and fs ¢(2) determine
the same function near +;(t) for s’ near s and t' near t. Thus the radius
of convergence R;; of fs; varies continuously with s and ¢, and there is
d > 0 such that Rs; > ¢ for all s and t. We can choose, then, parameter
values 0 = 59 < 57 < --- < s, = 1 such that |y, (t) — vs,_,(t)] < ¢ for
a <t < b. By the preceding lemma, the analytic continuation along vs,_,
leads to the same power series at z; as that along vs;. If we apply this
now successively to Yo = Vsg» Vsis Vso» - - - » We conclude after n steps that
analytic continuation along -y, leads to the same power series as analytic
continuation along ;. This proves the monodromy theorem.

Exercise. Suppose that the principal branch w = f(z) of the algebraic
function (2% — 1)!/3 is continued analytically from z = 2 around the figure-
eight path indicated below. What is the analytic continuation of the func-
tion at the end of the path?
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Solution. We deform the figure-eight path to a path for which it is pos-
sible to follow the analytic continuation more easily. By the monodromy
theorem, the analytic continuation is the same if we follow a path along
the real axis except for indentations at +1, as in the figure. For the various
segments of this path, we track the behavior of w as follows:

path from +2 to +1 ~» argw =0,
semicircle around +1 ~~ phase change of e
path from +1to —1 ~» argw = /3,
circle around —1 ~» phase change of ¢
path from —1 to +1 ~» argw = e~""/3,
semicircle around +1 ~~ phase change of e
path from +1 to +2 ~» argw = 0.

in/3
2
—27i/3
?

/3
?

Thus at the end of the path we return to the same branch w = f(z) that
we started with. This can be checked by factoring 2*# — 1 and tracking
separately each factor.

Exercises for V.8

1. Suppose that the principal branch of v/22 — 1 is continued analyt-
ically from z = 2 around the figure-eight path indicated above.
What is the analytic continuation of the function at the end of the
path? Answer the same question for the functions (2 — 1)!/3 and

(28 —1)1/3,

2. Show that f(z) = Logz = (2 — 1) — 3(z — 1) +--- has an analytic

continuation around the unit circle y(t) = e, 0 < t < 2m. Deter-
mine explicitly the power series f; for each t. How is fa, related

to fb?

3. Show that each branch of \/z can be continued analytically along

any path v in C\{0}, and show that the radius of convergence of the
power series f;(z) representing the continuation is |y(¢)|. Show that
vz cannot be continued analytically along any path containing O.
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4.

Let f(z) be analytic on a domain D, fix 290 € D, and let f(z) =
> an(z — 2z9)™ be the expansion of f(z) about zy. Let

F) = [ 50d = Y e
zo0 n=0

be the indefinite integral of f(z) for z near zyp. Show that F(z) can
be continued analytically along any path in D starting at zo. What
happens in the case D = C\{0}, zo = 1, and f(z) = 1/27 What
happens in the case that D is star-shaped?

Show that the function defined by
flz) = 3 2% = 24240+ 84

is analytic on the open unit disk {|z| < 1}, and that it cannot be
extended analytically to any larger open set. Hint. Observe that
f(2) = z + f(2?), and that f(r) — +oo as 7 — 1.

Suppose f(z) = Y a,z", where a, = 0 except for n in a sequence
ni that satisfies ngy1/ng > 1+ 0 for some & > 0. Suppose further
that the series has radius of convergence R = 1. Show that f(z)
does not extend analytically to any point of the unit circle. Remark.
Such a sequence with large gaps between successive nonzero terms
is called a lacunary sequence. This result is the Hadamard gap
theorem. There is a slick proof. If f(z) extends analytically across
z =1, consider g(w) = f(w™(1 4+ w)/2), where m is a large integer.
Show that the power series for g(w) has radius of convergence r > 1,
and that this implies that the power series of f(z) converges for
1<Rez<1l+e.

Suppose f(z) = > anz™, where the series has radius of convergence
R < oo. Show that there is an angle & such that f(z) does not have
an analytic continuation along the path v(t) = te'*, 0 < t < R.
Determine the radius of convergence of the power series expansion
of f(z) about te**.

Let f(z) be analytic at zg, and let ¥(t), @ < ¢t < b, be a path such
that y(a) = zo. If f(z) cannot be continued analytically along <,
show that there is a parameter value t; such that there is an analytic
continuation f;(z) for a <t < t;, and the radius of convergence of
the power series f;(z) tends to 0 ast — t;.

Let P(z,w) be a polynomial in z and w, of degree n in w. Suppose
that f(z) is analytic at zp and satisfies P(z, f(z)) = 0. Show that
if f:(2) is any analytic continuation of f(z) along any path starting
at zg, then P(z, fi(z)) = 0 for all . Remark. An analytic function
f(2) that satisfies a polynomial equation P(z, f(z)) = 0 is called an
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algebraic function. For instance, the branches of {/Z are algebraic
functions, since they satisfy z — w™ = 0.

Let D be the punctured disk {0 < |z| < €}, suppose f(z) is an-
alytic at zg € D, and e¥° = zy. Show that f(z) has an analytic
continuation along any path in D starting at zq if and only if there
is an analytic function g(w) in the half-plane {Rew < loge} such
that f(e”) = g(w) for w near wg. Remark. If f(z) does not extend
analytically to D but has an analytic continuation along any path
in D, we say that f(z) has a branch point at z = 0. For the proof,
use the fact that any path in D starting at z¢ is the composition of
a unique path in the half-plane starting at wy and the exponential
function e*.
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Laurent Series and Isolated
Singularities

In Section 1 we derive the Laurent decomposition of a function that is ana-
lytic on an annulus, and in Section 2 we use the Laurent decomposition on
a punctured disk to study isolated singularities of analytic functions. We
classify these as removable singularities, essential singularities, or poles,
and we characterize each type of singularity. In Section 3 we define iso-
lated singularities at oo, and in Section 4 we derive the partial fractions
decomposition of a rational function. In Sections 5 and 6 we use the Lau-
rent decomposition to study periodic functions and we relate Laurent series
to Fourier series. Sections 5 and 6 can be omitted at first reading.

1. The Laurent Decomposition

The Laurent decomposition splits a function analytic in an annulus as the
sum of a function analytic inside the annulus and a function analytic outside
the annulus.

Theorem (Laurent Decomposition). Suppose 0 < p < 0 < 400, and
suppose f(z) is analytic for p < |z— 29| < 0. Then f(z) can be decomposed
as a sum

(1.1) f(z) = folz) + fi(2),

where fo(z) is analytic for |z — z9| < o, and f1(z) is analytic for |z —zo| > p
and at oco. If we normalize the decomposition so that f)(co0) = 0, then the
decomposition is unique.

If f(z) is already analytic for |z — 29| < o, the Laurent decomposition
becomes the trivial decomposition f(z) = fo(z), with fi(z) =0. If f(z) is
already analytic for |z — 29| > p and vanishes at co, the Laurent decompo-
sition is the trivial decomposition f(z) = fi1(z), with fo(z) = 0.

165
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The uniqueness of the decomposition follows from Liouville’s theorem
by the following argument. Suppose that f(z) = go(2) + gi(z) is another
decomposition with the properties of the theorem. Then

(1.2) 9o(z) — fo(z) = filz) —gi1(2), p<lz—2|<o0.

Define h(z) to be equal to go(z) — fo(z) in the disk {|z — 20| < o}, and
equal to fi(z)—g1(z) in the exterior domain {|z —zy| > p}. These domains
overlap in the annulus {p < |z — zp| < ¢}, and the identity (1.2) shows that
the two definitions agree in the overlap. Thus h(z) is defined for all z € C.
Evidently, h(z) is an entire function, and h(z) tends to 0 as z — oo. By
Liouville’s theorem, h(z) is identically zero. Consequently go(z) = fo(2)
and g1(z) = f1(2), and there is at most one such decomposition.

‘e

To find such a decomposition, we apply the Cauchy integral represen-
tation theorem on an annulus, as follows. Choose r and s such that
p <1 < s <o. The Cauchy integral formula for an annulus yields

1 o, 1 70
fomrtos®

211 —2o|=s C—Z 211 !C—Zol='f‘C_Z

f(z) =

dg,

which is valid for r < |z — 29| < s. The function

folz) = —1—f 1<) dc¢, |z — zo| < s,
|

2y (—zol=s C—Z

is analytic for |z — zg| < s, and the function

fiz) = ——1—f A
I¢

211 —zo|=r C — Z

is analytic for |z — 29| > 7 and tends to 0 as z — oco. Thus we obtain
the decomposition f(z) = fo(z) + fi(z) for r < |z — 2] < s. Technically,
this decomposition depends on r and s. However, the uniqueness assertion
already established shows that the decomposition is independent of  and s,
so that fy(z) and fi(z) are defined for p < |z — 29| < o and have the
properties of the theorem.
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Example. The function f(z) = 1/(z —1)(z — 2) has three Laurent decom-
positions centered at 0. One represents the function in the punctured disk
{0 < |z| < 1}, one in the annulus {1 < |z| < 2}, and one in the exterior
domain {2 < |z| < oco}. Since the function is already analytic in the disk
{|z] < 1}, the decomposition in the punctured disk is given by fo(z) = f(2)
and fi(z) = 0. Since the function is analytic at co and vanishes there, its
Laurent decomposition with respect to the exterior domain {2 < |z| < co}
is given by f(2) = fi1(z) and fo(z) = 0. The only nontrivial Laurent de-
composition is with respect to the annulus {1 < |z| < 2}. To see what it
is, we consider the partial fractions decomposition

1 1 1

(z-1D(z-2) z-2 z-1
The summand fo(z) = 1/(z — 2) is analytic for |z] < 2, and the summand
fi(z) = —=1/(z — 1) is analytic for |z| > 1 and it vanishes at cc. Thus this
partial fractions decomposition coincides with the Laurent decomposition
with respect to the annulus.

three domains of convergence

ﬁ
N

Example. The function 1/sin z has a Laurent decomposition with respect
to each annulus {n7 < |z| < (n+1)7}, forn =0,1,2,.... We will see how
to obtain the Laurent decompositions in the next section.

Suppose now f(z) = fo(z) + f1(z) is the Laurent decomposition for a
function analytic for p < |z — 29| < 0. We can express fy(z) as a power
series in z — zg,

oo
fo(z) = Zak(z—zg)k, |z — 2| < 0,
k=0

where the series converges absolutely, and for any s < ¢ it converges uni-
formly for |z — 29| < s. Further, we can also express fi(z) as a series of
negative powers of z — 2o, with zero constant term, since f;(z) tends to 0
at 0o,

—1

fi(z) = Z ar(z — zo)¥, z — 20| > p-

k=—o0
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This series converges absolutely, and for any r > p it converges uniformly
for |z — 20| > r. If we add the two series, we obtain a two-tailed expansion

for f(z),

(e}

(1.3) flz) = Z ar(z — z0)*, p<|z— 2] <o,

k=—o0

that converges absolutely, and that converges uniformly for r < |z—2p| < s.
The series (1.3) is called the Laurent series expansion of f(z) with
respect to the annulus p < |z — 29| < 0.

To obtain a formula for the coefficients in the expansion, we divide f(z)
by (z — 2z0)"™! in (1.3) and integrate around the circle {|z — z9| = r}.
Since the series converges uniformly on the circle, we can interchange the
summation and integration. The result is

1 1
e _f()dr = S an(e—20)*dz
»fiz—zo|=r (Z _ Zo)n+1 (Z _ Zo)n+1 kzzoo
o0
= Z akf (z — z9)F " 1 dz.
k=—o00 |z—zo|=7
The integral of (z — z9)™ is 27i if m = —1, otherwise zero, so all the terms
in the series disappear except one, and the series reduces to 27ia,. Thus
1 z
(1.4) a, = —% ——L)nﬁdz, —xo<n <.
27r7’ |Z—Zo|='r‘ (Z - ZO)

Note that this formula for a,, coincides with the usual formula for the power
series coefficients in the case that f(z) is analytic for |z — 29| < o. In the
case that f(z) is analytic at co the formula for a, agrees with the formula
given in Section V.5.

We summarize our results in the following theorem.

Theorem (Laurent Series Expansion). Suppose 0 < p < 0 < 00, and
suppose f(z) is analytic for p < |z — 29| < o. Then f(z) has a Laurent
expansion (1.3) that converges absolutely at each point of the annulus,
and that converges uniformly on each subannulus r < |z — z9| < s, where
p <r < s < o. The coefficients are uniquely determined by f(z), and they
are given by (1.4) for any fixedr, p<r < 0.

Example. To expand the function f(z) = 1/(z — 1)(z — 2) in a Laurent
series centered at z = 0 and converging in the annulus {1 < |z| < 2}, we
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expand each of the partial fractions in a geometric series,

! =_1_.1_:_1<1+3+i+._.)
z—2 21—2/2 2 2 4 ’
1 1 1 1 1 1

o1 z1-1z  zmTmTT

This leads to the Laurent series representation

o0
flz) = Z arz”, 1< 2| <2,

k=—o00
where a, = —1if k <0, and ar = —1/25t1if £ > 0.
Example. The function f(z) = 1/(z — 1)(z — 2) can also be expanded

in a Laurent series centered at z = 1, convergent in the punctured disk
{0 < |z — 1] < 1}. Again we rely upon a geometric series,

1 1 00
= - = - ) (z-1)f, |z —1] < 1,
z—=2 1—(z-1) 1;
to obtain
(z—1)1(z—2) - _Zil—1—(2—1)—(z—1)2_(z_1)3_
:—i(z—l)k, 0<|z—1]<1.
k—=—

The tail of the series (1.3) with the positive powers of z — zy converges on
the largest open disk centered at zo to which fy(z) extends to be analytic,
while the tail of the series with the negative powers of z — 29 converges on
the largest exterior domain of the form {|z — zg| > 7} to which fi(2) ex-
tends analytically. Thus the largest open domain on which the full Laurent
series (1.3) converges is the largest open annular set centered at zo con-
taining the annulus {p < |z — 29| < o} to which f(z) extends analytically.
This annular set might extend to zy or to oo, to be a punctured disk or a
full disk, or a punctured complex plane or the full complex plane.

Exercise. Consider the Laurent series for f(z) = (22 — 72)/sinz that is
centered at 0 and that converges for |z| = 1. What is the largest open set
on which the series converges?

Solution. Since sin z has a simple zero at 7, the function (sinz)/(z — )
extends to be analytic and nonzero at z = 7. Hence (22 —72)/ sin z extends
to be analytic at z = m. Similarly, it extends to be analytic at z = —.
(We say that the singularities at z = +7 are “removable.”) The function
tends to co at 2 = 0 and at z = £2n. Thus the largest annular domain
containing the circle {|z] = 1} to which the function extends analytically
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is the punctured disk {0 < |z| < 27r}. This is then the largest open set on
which the series converges.

Exercises for V1.1

1. Find all possible Laurent expansions centered at 0 of the following
functions:

(2) () 2= 1

z+1 () (22 —1)(22—4)

2. For each of the functions in Exercise 1, find the Laurent expansion
centered at z = —1 that converges at z = % Determine the largest
open set on which each series converges.

3. Recall the power series for the Bessel function J,(z), n > 0, given in
Exercise V.4.11, and define J_,(2) = (—1)"J,(2). For fixed w € C,
establish the Laurent series expansion

exp [%(z - l/z)} = {:j Jn(w)z", 0 < |z] < o0.

n=—oo

From the coefficient formula (1.4), deduce that

1 27 . .
Jn(z) - ez(n()—zsm@)de, 2eC.
27 0
.
Remark. This Laurent expansion is called the Schlémilch for-
mula.

4. Suppose that f(z) = fo(z) + f1(2) is the Laurent decomposition of
an analytic function f(z) on the annulus {A < |z| < B}. Show that
if f(z) is an even function, then fo(z) and f;1(z) are even functions,
and the Laurent series expansion of f(z) has only even powers of z.
Show that if f(z) is an odd function, then fy(z) and fi(z) are odd
functions, and the Laurent series expansion of f(z) has only odd
powers of z.

5. Suppose f(z) is analytic on the punctured plane D = C\{0}. Show
that there is a constant ¢ such that f(z) —c¢/z has a primitive in D.
Give a formula for ¢ in terms of an integral of f(z2).

6. Fix an annulus D = {a < |z| < b}, and let f(z) be a continuous
function on its boundary &D. Show that f(z) can be approximated
uniformly on 8D by polynomials in z and 1/z if and only if f(2)
has a continuous extension to the closed annulus D U 8D that is
analytic on D.
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7. Show that a harmonic function u on an annulus {A < |z| < B} has
a unique expansion

u(re’?) = Z anr™ cos(nf) + Z b,r™ sin(nf) + ¢ logr,

n=-—oo n#0

which is uniformly convergent on each circle in the annulus. Show
that for each r, A < r < B, the coefficients a,, b,, and ¢ satisfy

1 w
apr" +a_pr "t = — / u (re’e) cos(nf)do, n #0,
T -7
n —n 1 " 20\ _.:
bpr™ —b_,r " = — U (re ) sin(n#)dé, n # 0,
™ —T
ag +clogr = —1— i u (rew) dé
0 [« 2ﬂ' . -

Hint. Use a decomposition of the form u = Re f + ¢ log|z|, where
f is analytic on the annulus.

2. Isolated Singularities of an Analytic Function

A point z; is an isolated singularity of f(z) if f(z) is analytic in some
punctured disk {0 < |z — 29| < r} centered at zy. For example, the function
1/z has an isolated singularity at z = 0, while 1/sin z has isolated singu-
larities at each of the points z = 0, +7,+2m,.... The functions {/z and
log z do not have isolated singularities at z = 0; they cannot be defined
even continuously on any punctured disk centered at 0.

OIS

isolated not isolated

Suppose that f(z) has an isolated singularity at zg. Then f(z) has a

Laurent series expansion
oo
(2.1) flz) = D> alz—=2)f, 0<l|z—z|<r
k=—o00

We classify the isolated singularity at zo as one of three types according
to whether no negative powers of z — 2y appear in the expansion, or at
least one but only finitely many negative powers appear, or infinitely many
negative powers appear. These are three mutually exclusive cases that
cover all possibilities. We discuss each of these cases in turn, and we prove
one theorem for each case.
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The isolated singularity of f(z) at zg is defined to be a removable
singularity if ax = 0 for all ¥ < 0. In this case the Laurent series (2.1)
becomes a power series

fz) = > a(z—20)*, 0<l|z—z|<r
k=0

If we define f(z09) = ag, the function f(z) becomes analytic on the entire
disk {|z — zo| < T}.

Example. The function (sinz)/z has an isolated singularity at z = 0,
where it is not defined. From the power series expansion of sin z we obtain
the Laurent series expansion

=1 - = Z_ ..
z 3! * 5! ’

valid for all z. We may extend (sin z)/z to be an entire function by defining

(sinz)/z to be 1l at 2 = 0.

If f(z) has a removable singularity at zo, then f(z) is bounded near z.
There is a converse statement, which provides a useful criterion for deter-
mining whether a singularity is removable.

Theorem (Riemann’s Theorem on Removable Singularities). Let
20 be an isolated singularity of f(z). If f(z) is bounded near zq, then f(z)
has a removable singularity at z.

To see this, we expand f(z) in a Laurent series (2.1) and use the for-
mula (1.4) for the coefficients given in the preceding section. Suppose
|f(z)] < M for z near 2y, and let r > 0 be small. Using the M L-estimate
to estimate the integral in (1.4), we obtain

1 M

M

If n < 0, the right-hand side tends to 0 as r — 0. We conclude that a,, = 0
for n < 0, and consequently the singularity at zy is removable.

The isolated singularity of f(z) at z is defined to be a pole if there is
N >0 éi:h that a_n # 0 but ax = 0 for all Kk < —N. The integer N is
the order of the pole. In this case the Laurent series (2.1) becomes

f(z) = Z ak(z—z0)* = et

Byt (z — zo)N zZ— 29

+a0+a1(z—zo)+- -

The sum of the negative powers,

-1
_ Lz = %N a-1
P(z) = k;Nak(z 20) G—2)¥ + +

z—20
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is called the principal part of f(z) at the pole zy. The principal part P(z)
coincides with the summand f;(z) in the Laurent decomposition f(z) =
fo(2)+ f1(2) given in the preceding section. The bad behavior of f(z) at 2
is incorporated into P(z), in the sense that f(z) — P(z) is analytic at 2.

A pole of order one is called a simple pole, and a pole of order two is
called a double pole. Thus 1/z has a simple pole at z = 0, and 1/(z —)?
has a double pole at z = 1.

Theorem. Let 2y be an isolated singularity of f(z). Then zy is a pole of
f(z2) of order N if and only if f(z) = g(z)/(z — z0)", where g(z) is analytic
at zo and g(z9) # 0.

The proof is straightforward. Suppose that f(z) has a pole of order N
at zp, and that f(z) has the above Laurent series. Then the power series
a_N+a_N+1(z—z0)+a_N+2(z—z0)2+~ -+ converges to a function g(z) that
is analytic at zo and satisfies f(z) = g(z)/(z — 20)", and further, g(zo) =
a_n # 0. Conversely, if g(z) is analytic at zy and satisfies g(z9) # 0, then
f(z) = g(2)/(z—20)" has Laurent series with leading term g(20)/(z—20)",

so that f(z) has a pole of order N at z.

Theorem. Let zy be an isolated singularity of f(z). Then z is a pole of
f(2) of order N if and only if 1/f(z) is analytic at zo and has a zero of
order N.

Again the proof is easy. Suppose f(z) has a pole of order NV at 29. Let
g(2) = (2 — 20)V f(2) be as above. Since g(29) # 0, the function h(z) =
1/g(z) is analytic at 29 and satisfies h(z0) # 0. Thus 1/f(2) = (z2—20) N h(z)
has a zero of order N at zy. This argument is also reversible. If 1/f(z)
has a zero of order N at zg, then 1/f(z) = (z — 29)™V h(z) for some analytic
function h(z) satisfying h(z0) # 0, and then g(z) = 1/h(z) is analytic and
nonzero at zg, so f(z) = g(z)/(z — 20)" has a pole of order N at z.

Example. The function 1/sinz has poles at each of the zeros of sinz.
Since the zeros of sin z are simple, they are simple poles for 1/sin z.

Exercise. Consider the Laurent series expansion for 1/ sin z that converges
on the circle {|z| = 4}. Find the coefficients ag, a_1, a_2, and a—3 of 1,
1/z,1/2%, and 1/z3, respectively. Determine the largest open set on which
the series converges.

Solution. The only zeros of sin z are at the integral multiples of m. These
are then the only singularities of 1/sinz, and they are all simple poles.
The largest open annular set containing the circle and to which 1/sinz
extends analytically is then the annulus {7 < |z| < 27}. This annulus is
then the largest open set on which the Laurent series converges. From the
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expansion sin z = z + O(2%) near z = 0, we see that

= ! + lyti
= — ic
sin z z analyt
near z = 0, and 1/sinz — 1/z is analytic at z = 0. Similarly, from the
expansion sinz = —(z — ) + O((z — 7)3) at z = 7, we see that
1 1 i
- = — + analytic
sin z z—T

near z = m, and 1/sinz + 1/(z — m) is analytic at z = w. By the same
token, 1/sinz + 1/(z+ m) is analytic at z = —w. We conclude that if

fi(z) = ! + L l,

z+m z—m z
then fo(z) = 1/sinz— fi(z) is analytic for |z| < 2x. Thus 1/sin z = fo(2)+
fi1(2) is the Laurent decomposition of 1/sinz. To obtain the negative
powers of the Laurent expansion, we expand f}(z) in a series of descending

powers of z, using the geometric series expansion. This is done most easily
by combining the first two summands,

2z 1 1 2 &, p2k 1 . ox2k
fl(z):__22_2+2§227:2+;?m'

Note that all the even powers of z disappear, as they must, since 1/sin z is
an odd function. We read off the coefficients a_; =1 and a_3 = 2m2.

We say that a function f(z) is meromorphic on a domain D if f(2)
is analytic on D except possibly at isolated singularities, each of which is
a pole. Sums and products of meromorphic functions are meromorphic.
Quotients of meromorphic functions are meromorphic, provided that the
denominator is not identically zero. Note also that if there are infinitely
many poles of f(z) in D, then we can arrange them in a sequence that
accumulates only at the boundary of D. Otherwise, there would be a point
of accumulation in D of the poles of f(z), and this point would not be an
isolated singularity of f(z).

Example. The function 1/sinz is meromorphic on the entire complex
plane. As another example, let R(z) be any rational function. We can
express R(z) as a quotient of polynomials in the form

( n o clim g

(z—2z)"1 -z — )™

where the (;’s and z;’s are all distinct. Evidently, R(z) has a zero of order
m; at each ¢; and a pole of order n; at each z;. Thus R(z) is meromorphic
on the entire complex plane.

We add one more useful characterization of poles.
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Theorem. Let zy be an isolated singularity of f(z). Then 2y is a pole if
and only if |f(z)] — o0 as z — 2p.

One direction of the theorem is trivial. If f(z) has a pole of order N
at zp, then g(z) = (z — 29)" f(2) is analytic and nonzero at zp, so that

1f(2)] = |z 20"V |g(2)] = oo

as z — zg9. For the converse, we use Riemann’s theorem on removable
singularities. Suppose |f(2)] — o0 as z — 2z9. Then f(z) # 0 for z near z,
so that h(z) = 1/f(z) is analytic in some punctured neighborhood of z,.
Further, h(z) — 0 as z — z3. By Riemann’s theorem, h(z) extends to be
analytic at zg, and moreover, h(z) = 0. If N is the order of the zero of
h(z) at zg, then f(z) = 1/h(2) has a pole of order N at zq.

The isolated singularity of f(z) at 2o is defined to be an essential sin-
gularity if ax # 0 for infinitely many k£ < 0. Thus an isolated singularity
that is neither removable nor a pole is declared to be essential.

Example. The Laurent expansion of el/?

1z _ L L

¢ —1+z+2!z2+3!z3

Since infinitely many negative powers of z appear in the expansion, the

isolated singularity at z = 0 is essential. That the singularity is essential

can also be seen from the behavior of e!/? as z — 0. Since el/* — +o00

as £ > 0 tends to 0, the singularity is not removable. And since e!/(¥)

has unit modulus, the modulus of e!/? does not tend to +oco as z tends

to 0 along the imaginary axis, and the singularity is not a pole. The only
remaining possibility is that the singularity is essential.

at z = 0 is given by

+ -, z #0.

At an essential singularity, the values of f(z) cluster towards the entire
complex plane. That is the content of the following theorem.

Theorem (Casorati-Weierstrass Theorem). Suppose 2 is an essen-
tial isolated singularity of f(z). Then for every complex number wy, there
is a sequence z, — zg such that f(z,) — wo.

We argue the contrapositive. Suppose that there is some complex num-
ber wq that is not a limit of values of f(z) as above. Then there is
some small ¢ > 0 such that |f(z) — wg| > € for all z near 2. Hence
h(z) = 1/(f(z) —wo) is bounded near zo. By Riemann’s theorem, h(z) has
a removable singularity at z9. Hence h(z) = (z — z9)V g(z) for some N > 0
and some analytic function g(z) satisfying g(20) # 0. Thus f(2) — wo =
1/h(z) = (z—20) " (1/g(2)), where 1/g(z) is analytic at zo. If N = 0, f(2)
extends to be analytic at zg, while if N > 0, f(z) has a pole of order N
at zo. This establishes the theorem.
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Later we will prove Picard’s theorem, that if f(z) is an analytic func-
tion with an essential isolated singularity at 2, then for all complex num-
bers wg with possibly one exception, there is a sequence 2z, — 2o such that
f(z,) = wo. The function f(z) = e!/?, which omits the value w = 0, shows
that we must allow for the exceptional point.

Exercises for VI.2
1. Find the isolated singularities of the following functions, and de-

termine whether they are removable, essential, or poles. Determine
the order of any pole, and find the principal part at each pole.

sin z 1
(a) z/(2%2 —1)2 (d) tanz = P (g) Log (1 - ;)
adi (1 Log z
(b) zjz_ ; (e) 22sin (Z) (h) GoP
() 0 72 (i) e/

2. Find the radius of convergence of the power series for the following
functions, expanded about the indicated point.

z—1
(a) -/—, about z =3 +1, (c) ,Z , about z = i,
z¢ =1 sinz
COs 2 2
b) —=—, about z =0, d , bout z = mi.
()zQ_W2/4 z ()sin3z about z = i

3. Consider the function f(z) = tanz in the annulus {3 < |z| < 4}.
Let f(2) = fo(z) + f1(2) be the Laurent decomposition of f(z), so
that fo(z) is analytic for |z| < 4, and f;(z) is analytic for |z] > 3
and vanishes at oo. (a) Obtain an explicit expression for fi(z).
(b) Write down the series expansion for f;(z), and determine the
largest domain on which it converges. (c) Obtain the coefficients
ao, a1, and az of the power series expansion of fo(z). (d) What is
the radius of convergence of the power series expansion for fo(2)?

4. Suppose f(z) is meromorphic on the disk {|z| < s}, with only a finite
number of poles in the disk. Show that the Laurent decomposition
of f(z) with respect to the annulus {s — ¢ < |z| < s} has the form
f(2) = fo(2) + f1(2), where fi(z) is the sum of the principal parts
of f(z)/4t its poles.

5. By estimating the coefficients of the Laurent series, prove that if zg
is an isolated singularity of f, and if (z—29) f(2) — 0 as z — zp, then
zg is removable. Give a second proof based on Morera’s theorem.

6. Show that if f(z) is continuous on a domain D, and if f(z)® is
analytic on D, then f(z) is analytic on D.
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7.

10.

11.

12.

13.

14.

Show that if z¢ is an isolated singularity of f(z), and if (z—zo)" f(2)
is bounded near zg, then z; is either removable or a pole of order at
most N.

A meromorphic function f at 2y is said to have order N at z, if
f(2) = (z — 20)Vg(2) for some analytic function g at zo such that
9(zo0) # 0. The order of the function 0 is defined to be +o00. Show
that

(a) order(fg, zo) = order(f, z9) + order(g, 29),

(b) order(1/f,29) = —order(f, 2o),

(c) order(f + g,20) > min{order(f, z9), order(g, zo)}-

Show that strict inequality can occur in (c), but that equality holds
in (c) whenever f and g have different orders at zy.

Recall that “f(2) = O(h(z)) as z — 2" means that there is a
constant C such that |f(z)| < C|h(z)| for z near z;. Show that
if zp is an isolated singularity of an analytic function f(z), and if
f(z) = O((z—20)™) as z — 2z, then the Laurent coefficients of f(z)
are 0 for k < m, that is, the Laurent series of f(z) has the form

f(2) = am(z—20)™ + ams1(z — 20)™H +---.

Remark. This shows that the use of the notation O(z™) in Sec-
tion V.6 is consistent.

Show that if f(z) and g(z) are analytic functions that both have the
same order N > 0 at 2y, then

i L) _ I ()

=20 g(z) g™ (20)

Suppose f(z) = Y axz® is analytic for |2| < R, and suppose that
f(z) extends to be meromorphic for |z| < R + ¢, with only one
pole zgp on the circle |z| = R. Show that ax/ax+1 — 20 as k — 0.

Show that if zg is an isolated singularity of f(z) that is not remov-
able, then zj is an essential singularity for ef(?).

Let S be a sequence converging to a point zg € C, and let f(z) be
analytic on some disk centered at zy except possibly at the points
of S and at zg. Show that either f(z) extends to be meromorphic on
some neighborhood of zg, or else for any complex number L there
is a sequence {w;} such that w; — 29 and f(w;) — L.

Suppose u (re*) is harmonic on the punctured disk {0 < r < 1},
with Laurent series as in Exercise 7 of Section 1. Suppose a > 0
is such that 7®u(re®) — 0 as r — 0. Show that a, = 0 = b, for
n < —a.
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15. Suppose u(z) is harmonic on the punctured disk {0 < |z| < p}.
Show that if

u(zl)
log(1/]2])

as z — 0, then u(z) extends to be harmonic at 0. What can you say
if you know only that |u(z)| < Clog(1/|z|) for some fixed constant C
and 0 < |z] < p?

3. Isolated Singularity at Infinity

We say that f(z) has an isolated singularity at oo if f(z) is analytic
outside some bounded set, that is, if there is R > 0 such that f(z) is
analytic for |z| > R. Thus f(z) has an isolated singularity at oo if and
only if g(w) = f(1/w) has an isolated singularity at w = 0. We classify
the isolated singularity of f(z) at oo according to the isolated singularity
of g(w) at w = 0. Suppose that f(z) has a Laurent series expansion

flz) = Z brz*, |z| > R.

k=—00

The singularity of f(z) at co is removable if by = 0 for all k£ > 0, in which
case f(z) is analytic at co. The singularity of f(z) at co is essential if
br # O for infinitely many £ > 0. For fixed N > 1, f(z) has a pole of
order N at oo if by # 0 while by =0 for kK > N.

Suppose f(z) has a pole of order N at co. The Laurent series expansion
of f(z) becomes

b_
flz) = szN+bN_1zN—1+--~+b1z+bo+71+---, 2| > R,

where by # 0. We define the principal part of f(z) at oo to be the
polynomial

P(z) = byzN +by_12V 14 4 biz+ b

The inclusion 6 the constant by in the principal part is a matter of conve-
nience. It guarantees that f(z) — P(z) is not only analytic at co but also
vanishes there.

Example. Any polynomial of degree N > 1 has a pole of order N at cc.
The principal part of the polynomial coincides with the polynomial itself.

Example. The function e* = 1+2z422/2!+--- has an essential singularity
at oo.
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Exercises for V1.3

1. Consider the functions in Exercise 1 of Section 2 above. Determine
which have isolated singularities at oo, and classify them.

2. Suppose that f(z) is an entire function that is not a polynomial.
What kind of singularity can f(z) have at oco?

3. Show that if f(z) is a nonconstant entire function, then ef(?) has
an essential singularity at z = oo.

4. Show that each branch of the following functions is meromorphic
at 0o, and obtain the series expansion for each branch at oo.

@ -2 GYE-D (-

4. Partial Fractions Decomposition

Proceeding in analogy with our earlier definition, we say that a function
f(z) is meromorphic on a domain D in the extended complex plane C* if
f(z) is analytic on D except possibly at isolated singularities, each of which
is a pole. Again, sums and products of meromorphic functions are mero-
morphic. Quotients of meromorphic functions are meromorphic, provided
that the denominator is not identically zero.

Any rational function is meromorphic on the extended complex plane C*,
including at co. We aim to establish the converse.

Theorem. A meromorphic function on the extended complex plane C* is
rational.

To see this, note first that a meromorphic function f(z) on the extended
complex plane can have only a finite number of poles. Otherwise, they
would accumulate at a point that would not be an isolated singularity of
f(2). If f(z) is analytic at oo, we define P, (z) to be the constant function
f(00). Otherwise, f(z) has a pole at co and we define Py, (z) to be the
principal part of f(z) at co. In any event, P, (z) is a polynomial, and
f(z) = Po(z) — 0 as z — oo. Let z1,...,2z;, be the poles of f(z) in the
finite complex plane C, and let Px(z) be the principal part of f(z) at zk.
It has the form

aq Q2 Qn

Py(z) = Z—Zk+ (z—zk)2+“-+m’

and in particular, Px(z) is analytic at oo and vanishes there. Consider the
function

9(2) = f(2) = Poo(2) = >_ Py(2).
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Since f(z) — Px(z) is analytic at 2z, and each P;(z) is analytic at zj for
j # k, g(z) is analytic at each zp. Hence g(z) is an entire function, and
further, g(z) — 0 as z — oo. By Liouville’s theorem, g(z) is identically
zero. Thus

(41) f(z) = Pool2)+ ) _Pi(2),

which shows in particular that f(z) is a rational function.

The decomposition (4.1) is called the partial fractions decomposition
of the rational function f(z). As a byproduct of the proof we obtain the
following.

Theorem. Every rational function has a partial fractions decomposition,
expressing it as the sum of a polynomial in z and its principal parts at each
of its poles in the finite complex plane.

Suppose that p(z) and ¢(z) are polynomials. If the degree of ¢(z) is
strictly less than the degree of p(z), then p(z)/q(z) — 0 as 2 — oco. Thus
f(z) = p(2)/q(z) is analytic at co and vanishes there, and the principal part
P, (z) is zero. Formula (4.1) expresses f(z) as the sum of the principal
parts at each of its finite poles.

Example. The function 1/(2? — 1) is analytic at co and vanishes there,
and it has poles at +1. The partial fractions decomposition is

1 1 1 1 1

22—-1  2z-1 2241"°

and these summands are the principal parts at +1 and —1, respectively.

For arbitrary polynomials p(z) and ¢(z), we can use the division algo-
rithm to find the principal part Py (z) of p(z)/q(z) at co. The division
algorithm is a procedure that produces in a finite number of steps polyno-
mials P (z) and r(z) that satisfy

(4.2) p(2) {Poo(z)q(z) + r(2), deg r(z) < deg q(z).

It proceeds as follows. We assume that ¢(z) is a monic polynomial of degree
m, so that g(z) = 2™ 4 ---. We start with a polynomial p(z) of degree
n > m, say p(z) = cpz™+---. For the first step we kill the top coefficient of
p(z) by defining p;(z) = p(z) —coz™ ™¢q(z). Thus p;(z) has degree n; < n,
say p1(z) = ¢12™q(z) + ---. Then we repeat the first step and define
p2(2) = pi(2) — c12™ " ™q(z), which has degree no < n;. We proceed in
this fashion until we reach a polynomial px(2) = pr—1(2) —ck—12"*-1""¢q(z2)
such that the degree of pg(z) is less than m. This occurs after at most
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n —m + 1 steps, and then we have

p(z) = 02" Mq(2) + p1(2) = 2" ™q(2) + 12" " "q(z) + pa(z) = - --
= ¢oz2" "q(2) + c12™ T "q(2) + - -+ ck—12™ T q(2) + pr(2).

We set r(2) = pr(2), and we let P, (2) be the sum of the terms multiplying
q(z), and we obtain the decomposition (4.2).

Now the function p(z)/q(z) — Pwo(z) = 7(2)/q(z) is analytic at co and
tends to O there. Thus the polynomial P (z) coincides with the principal
part of p(z)/q(z) at co. Our recipe for obtaining the partial fractions
decomposition of an arbitrary rational function p(z)/q(z) is then first to
obtain the polynomials Py, (z) and r(z) that satisfy (4.2) from the division
algorithm, and then to find the principal parts of r(z)/q(z) at each of the
zeros of q(z).

Example. To obtain the partial fractions decomposition of 23/(22 + 1),
first express z3 in the form given by the division algorithm (4.2), which
is

2 = 222 +1) - 2

corresponding to P (z) = z and r(z) = —z. Thus

Z3 z

= z i
22 +1 2241

Then observe that the poles at +% are simple poles, so that

z 1o J6]
3 = -+ -
z¢+1 z—1 z+1

for some constants @ and 3. We put this expression over a common de-
nominator and solve for a and 8. This leads to the partial fractions de-
composition

Exercises for V1.4

1. Find the partial fractions decompositions of the following functions.

1 1 z—
() 22 _ (c) (z+1)(22 +22+2) (€) z2+ 1
2241 1 z—4z+3
(b) oD (d) =1 6 =2——%

2. Use the division algorithm to obtain the partial fractions decompo-
sition of the following functions. ]
3 9
z2+1 z7+1 z
(2) 22 +1 (b) 28 -1 (c) (22 +1)(z — 1)2
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3. Let V be the complex vector space of functions that are analytic on
the extended complex plane except possibly at the points 0 and ¢,
where they have poles of order at most two. What is the dimension
of V7?7 Write down explicitly a vector space basis for V.

5. Periodic Functions

A complex number w is a period of a function f(z) if f(z + w) = f(2)
wherever defined. The function f(z) is periodic if it has a period w # 0.

The exponential function e? is periodic with periods 0, 273, +4mi, .. ..
The exponential function e** is periodic with periods 0, +27, +4x, ....
Sums of exponential functions with the same periods are periodic. Thus
cosz = (€ + €7%*)/2 and sin z = (e** — e**)/2i are periodic. One of our
goals in this section is to show that any periodic analytic function in a
half-plane or strip can be represented as a sum of exponential functions.

If w # 0 is a period of f(z), the function g(z) = f(wz) satisfies g(z+1) =
flwz +w) = f(wz) = g(z), so g(z) has period 1. Thus we can always
make a change of variable to arrange that one of the periods of a given
periodic function is w = 1. We focus on functions that are analytic on a
horizontal strip and that are periodic with period 1, that is, that satisfy
f(z+1) = f(2). This includes the exponentials €?"**? for k an integer, and
any linear combination of these exponentials.

Theorem. If f(z) is analytic on the horizontal strip {a < Im(z) < B}, and
f(2) is periodic with period 1, then f(z) can be expanded in an absolutely
convergent series of exponentials

oo

flz) = Z ape’mkz a < Im(z) < B.

k=—o00

The series converges uniformly on any smaller strip {ay < Im(z) < By},
where a < ag < ﬁo < .

< I, w=elm™

e -2TQ
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To see this, we make an exponential change of variable
arg w

o2
and we set g(w) = f(z) with z as above. Since f(z) is periodic with
period 1, the value g(w) does not depend on the choice of the argument of w.
Thus g(w) is well-defined, and g(w) is analytic for e 2% < |w| < e~ 27,
We expand g(w) as a Laurent series _ axw* in this annulus, and this yields
the exponential series for f(z).

: 1
w = ™2, z = ——log |w| +
2T

Theorem. Suppose f(z) is analytic on the half-plane {Im(z) > a}, and
f(2) is periodic with period 1. If f(z) is bounded as Im(z) — +o0, then
f(2) can be expanded in an absolutely convergent series of exponentials

flz) = ZakeQMkz, Im(z) > a.
k=0

The series converges uniformly on any smaller half-plane {Im(z) > ao},
where agy > «.

In this case the change of variable w = €*™%# converts f(z) to an analytic
function g(w) on the punctured disk 0 < |w| < e~27®. The hypothesis on
f(z) implies that g(w) is bounded as w — 0. By Riemann’s theorem on
removable singularities, g(w) extends to be analytic at 0. Hence g(w) has
a power series expansion

oo
gw) = > apwt,  |w| <e
k=0

and this yields the exponential series for f(z).

Example. The meromorphic function 1/sin(27z) is analytic in the upper
half-plane and has period 1. From
|2

|sin(272)|? = sin?(27z) + sinh?(27y), z =+ 1y,

we see that 1/sin(27z) — 0 as y = Im(z) — +oo. By the preceding
theorem, 1/sin(27z) can be expanded in a series of exponentials e2™**
that converges absolutely in the upper half-plane. The expansion can be
obtained directly from a geometric series,

1 —2ie™

_ — = —9 627rzz_*_€67r1,z_+_6107mz+._.
sin(2mz) 1 — edmz

Now we change our point of view. We fix a function f(z), say f(z)
is a meromorphic function on the complex plane, and we study the set
of periods of f(z). If f(z) is constant, then every complex number is a
period of f(z), and there is not much to say. So we assume that f(z) is
nonconstant.
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If w; and ws are periods of f(z), then so are mw, + nw» for all integers m
and n. (The periods form an “additive subgroup” of the complex numbers.)

Let z9 be any point at which f(z) is analytic. Since the zeros of a
nonconstant analytic function are isolated, f(zq + ¢) — f(20) # 0 on some
punctured disk {0 < |¢| < p}. Since f(zo+w) — f(20) = 0 for any period w
of f(z), there can be no periods of f(z) in the punctured disk. Thus any
nonzero period w of f(z) satisfies |w| > p.

If w and wy are two different periods of f(z), then w; — w2 is a nonzero
period, so |w; — wz| > p. Since any bounded subset of the complex plane
can be covered by a finite number of disks of radius p/2, and each of these
contains at most one period, we conclude that any bounded subset of the
complex plane contains only finitely many periods. (The periods form a
“discrete subgroup” of the complex numbers.)

Let L be a straight line through 0 that contains a nonzero period, and
let w; be a nonzero period on L that is closest to 0. Then there cannot
be a period between two consecutive integral multiples kw; and (k + 1)w;
of wy, or by subtracting we would obtain a period on L closer to 0 than w;.
Thus the periods on L are precisely the integral multiples of w;.

It may occur that all the periods of f(z) lie on the same straight line
through 0. Otherwise, from among the periods not on the line L, choose
a period wy that is closest to the line segment [0,w;]. We claim that all
periods of f(z) have the form mw; + nws for integers m and n. We argue
as follows.

W) +w
w5 1+ Wy

W

Let P be the closed parallelogram with vertices 0, w;, ws, and wy + wa.
Thus P consists of precisely the complex numbers of the form sw; + tws
where 0 < s,t < 1. Every complex number can be expressed in the form
mwi + nwe + 2, where m,n are integers and z € P. Geometrically, this
means that the parallelograms P + mw; + nws fill out the complex plane.
We cut P into two triangles, the triangle with vertices 0, w;, w2, which we
denote by T, and the triangle w; +ws —T with vertices w;, ws, and wj +ws.
The only periods in T are the vertices, since any other point of T either
lies on L closgr to 0 than w; or lies off L closer to [0,w;] than we. It follows
then that the only periods in P are the four vertices, since if w is a period
in P, then either w or w; +ws —w is a period belonging to T', hence a vertex
of T. Since any period can be expressed in the form mw; + nw2 + w, where
m,n are integers and w is a period in P, in fact every period is an integral
combination of w; and wsy, as asserted.

We summarize our results as follows.
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Theorem. Suppose that f(z) is a nonconstant meromorphic function on
the complex plane that is periodic. Either there is a period w, for f(z)
such that the periods of f(z) are the integral multiples mw;, —00 < m <
00, or there are two periods w; and wo for f(z) that do not lie on the
same line through the origin such that the periods of f(z) are the integral
combinations mwi + nws, —00 < M, N < 0.

In the case that the periods of f(z) all lie on the same straight line
through the origin, we say that f(z) is simply periodic. Otherwise, we
say that f(z) is doubly periodic. The entire functions e* and sin z are
simply periodic. It is possible to construct (as in Exercise 7) meromorphic
functions on the complex plane that are doubly periodic. However, the
only entire functions that are doubly periodic are the trivial ones.

Theorem. An entire function that is doubly periodic is constant.

Indeed, if the entire function f(z) is doubly periodic, and if |f(2)| < M
on the parallelogram P constructed above, then by periodicity |f(2)| < M
on each translate mw; + nwy + P of P. Since these translates fill out the
complex plane, f(z) is a bounded entire function. By Liouville’s theorem,
7(z) is constant.

Exercises for VI.5

1. Show that if f(z) and g(z) have period w, then so do f(z) + g(2)
and f(z)g(z).

2. Expand 1/ cos(272) in a series of powers of €2™** that converges in
the upper half-plane. Determine where the series converges abso-
lutely and where it converges uniformly.

3. Expand tan z in a series of powers of exponentials e?*?, —oco < k <
00, that converges in the upper half-plane. Also find an expansion of
tan z as an exponential series that converges in the lower half-plane.

4. Let f(z) be an analytic function in the upper half-plane that is
periodic, with real period 2\ > 0. Suppose that there are A,C > 0
such that | f(z + iy)| < CeA¥ for y > 0. Show that

f2) = 3 anem
n>—AX

where the series converges uniformly in each half-plane {y > €}, for
fixed € > 0.

5. Suppose that +1 are periods of a nonzero doubly periodic function
f(2), and suppose that there are no periods w of f(z) satisfying
0 < |w| < 1. How many periods of f(z) lie on the unit circle?
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Describe the possibilities, and sketch the set of periods for each
possibility.

We say that w; and ws generate the periods of a doubly periodic
function if the periods of the function are precisely the complex
numbers of the form mw; + nws where m and n are integers. Show
that if w; and ws generate the periods of a doubly periodic function
f(z), and if A; and A2 are complex numbers, then A; and A, generate
the periods of f(z) if and only if there is a 2x 2 matrix A with integer
entries and with determinant +1 such that A(wy,ws) = (A1, A2).

Let wy and ws be two complex numbers that do not lie on the same
line through 0. Let k > 3. Show that the series

oo

1
Z (z — (mwy + nwoy))k

m,n=—00

converges uniformly on any bounded subset of the complex plane
to a doubly periodic meromorphic function f(z), whose periods are
generated by w; and ws. Strategy. Show that the number of periods
in any annulus {NV < |z] < N + 1} is bounded by CN for some
constant C.

6. Fourier Series

A complex Fourier series is a two-tailed series of the form

(6.1)

o0
E cke®? = e 0e”? 4 167 4oy +cre? +cpe® -

k=—o0

Laurent expansions are intimately related to Fourier series. If the Laurent

series

f(z) = Z ax 2"

k=—o0

converges uniformly on the circle {|z] = r}, then

is the
Fourie

. m =
f(reze) _ Z akrkezke

k=—o00

k

Fpurier series expansion of f(re*), regarded as a function of . The
coefficients of the expansion are the coefficients ¢, = axr”®.

Suppose the series (6.1) converges uniformly to a function f (eie),

fe?) = D eeh

j=—00
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We can capture the coefficients of the series by multiplying by the exponen-
tial function e~ %% and integrating with respect to the probability measure
df/2m. The orthogonality relations for the exponential functions,

62 [ nneds _ 1=k
-7 271' 07 ]#k’

then yield
T : do
/ f(rezo) _Zke E: CJ/ % _zk9d9 = Ck-

This leads us to define the Fourier coefficients of any piecewise contin-
uous function (or any integrable function) f (e’e) to be

T , 0 dO
(6.3) ck = / f(e?) e *—, —00 < k < 00,
. 27
and we associate to f (eie) the Fourier series
(6.4) f (619) ~ Z ckeike
k=—oc0

where the ¢;’s are defined by (6.3). We call }_ c,e®*® the Fourier series
of f (ew). However, we face now two big problems. Does the Fourier series
of f (ew) converge? And if so, to what?

Example. Define f (ew) to be —1 for —m < 0 <0, and +1 for 0 < 8 < 7.

The Fourier coeflicient ¢y is the average value of f (eie), which is 0. If
k # 0, then

T —1 0 —3 s
Ck = _/0 e—ik9ﬁ+/ e‘ikegg = & ¢ _ v
- 2 0 2m 2mik 2mik |,
1 1
= 1—(=)F = (=1)F+1] = —[1-(-1)].
2mik [ (=1) (=1)" + } ik [ (=1) ]

This is 0 if k£ is even and 2/7ik if k is odd. Thus the complex Fourier series

of f (e”) is
i 2 Loike _ —2\ _30 _2> —if
FE) ~ 5 2 k¢ T (37rz'>e * <m‘ ¢

+ 2 629 + 2 6319 + ..
m 37rz

If we combine the terms for £k, we obtain sine functions, and the series
becomes

(6.5) f(ew) ~ o (Sin9+§sin39+%sin50+~->.
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The terms of the series are all zero at 8 = 0 and at 8 = 7. We will soon
see that the series converges to f (e®) for 0 < |0 < .

Theorem. If f (&) is piecewise continuous (or more generally, square-
integrable), with Fourier series f (e’e) ~ Y cre*®, then for m,n > 0 we

have
_[r i0 2%
i

66) 3 Il [ 3

k=—m

E cke

This is established by writing

2: (f (eio)* i 2]9> <f (619)_ Z cke—zkb’)’

j=—m k=—m

n

lf(eze) _ Z cpe*®

k=-m

multiplying out the product on the right, and integrating both sides from
—7 to w. The integrals featuring the products of exponentials for j # k
drop out, on account of the orthogonality relations (6.2). What remains
on the right after we integrate is

oy dH ko 48
[l s -Sa [ seneres
X / T 4 Y ol

In view of formula (6.3), we recognize the second and third integrals ap-
pearing here as ¢, and ¢; respectively. Thus the sum is equal to

< /_71' ‘f(eie 2 d9 Z|Cki Zlcj\Q'*_Zich‘

If we cancel the two sums over j and move Y |cx|? to the other side, we
obtain (6.6).

The identity (6.6) shows that the partial sums of the series 3" |cx|? are
bounded. Consequently, the series Y |cx|? converges, and from (6.6) we
obtain the following estimate.
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Theorem (Bessel’s Inequality). If f (e’e) is piecewise continuous (or
more generally, square-integrable), with Fourier series f (e?) ~ 3" cxe'*?,
then

- T ov)2 46
6.7 > lal? < [ 15 e 5

k=—o00 -m

From Bessel’s inequality it follows in particular that ¢, — 0 as k — +o0.
With this observation in hand, we are now ready to state and prove our
main theorem on pointwise convergence of Fourier series.

Theorem. Suppose f (ew) is piecewise continuous (or square integrable),
with Fourier series f (€®) ~ 3 cxe®®. If f (e®) is differentiable at 6y,
then the Fourier series of f (e} converges to f(e'™) at 6 = 6o,

[e @] mn
f(e’eo) = g cre®% = lim _S_ cretkdo.
m.n—oo
— OO

k=—m

Though Fourier series had been studied intensively for well over a cen-
tury, this ingenious proof was discovered only relatively recently, by P.
Chernoff in 1980.

We consider first the special case in which 6y = 0 and e*® = 1. Define
g(e®) = [f () — f(1)] / (¢*® — 1). The differentiability of f (e?’) at § =
0 implies that g (e”) has a limit as § — 0. Consequently, g (e®) is also
piecewise continuous. Denote the Fourier coefficients of g (ew) by bg, so
that g (") ~ 3" bre™*®. Bessel’s inequality for g (¢*®) shows that by — 0
as k — +00. Now we compute the c;’s in terms of the b’s. Since f (e®) =
g (e?) (e — 1) + f(1), we have

4 : . o dl T 1.0 d0
_ 10 0 —1ik6 —1k0

-7 -7

When we express these integrals as Fourier coefficients of ¢ (eie), we obtain
¢k =bk—1 — b if k #0, and co = b—1 — by + f(1). Hence the series ) ck
telescopes, and we obtain

n

Yoo = f)+ D (Bro1—be) = F(1) +bom1 ~bn,

k=—m k=—m

which tends to f(1) as m,n — +oo. This proves the theorem when 6y = 0.

The case when 6p is arbitrary is reduced to the above special case by
a change of variable. Consider the function h(e®) = f (ei(9+90)) ~
3" axe*®®, which is piecewise continuous and which is differentiable at § = 0.
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The Fourier coefficient aj, of h (%) is

—Tr

2T . 27

Thus the Fourier series of f (ew) evaluated at 0 = 6 is Z ckeike0 = Z ak,

which is the same as the Fourier series of h (ew) evaluated at 8 = 0. We
have shown that the latter converges to k(1) = f(e%%). This completes the
proof.

Example. Consider the series in (6.5). By the convergence theorem, the
series converges to +1 for 0 < 6§ < 7 and to —1 for —m < 8 < 0. The
convergence theorem does not give any information about the points 8 =0
and 8 = £x, where the function is discontinuous. However, we see directly
that the series converges to 0 at these points.

We aim now to establish a result on uniform convergence of Fourier series.
We begin by showing that the Fourier series of a smooth function can be
differentiated term by term.

Theorem. Suppose f (ew) is a continuously differentiable function of 0,
with Fourier series f (e®) ~ Y cxe'*®. Then the Fourier series of the
derivative of f (ew) is obtained by differentiating term by term,

d i0 . ik@
@f(e ) ~ szcke )

To check this, we simply write down the expression for the kth Fourier
coeflicient of the derivative and we integrate by parts. The Fourier coefhi-
cient of the derivative is

" —ike_d_ 0 d_9_ —ik@ ¢ (_if
[t € g = )

—T

+z’k/ f (ew) g~ 1k0 % = ikcy .

—T

If we combine this theorem with Bessel’s inequality, we can show that
the Fourier coefficients of an n-times continuously differentiable function
tend to zero at least as rapidly as the nth power of 1/k. The smoother the
function, the more rapidly its Fourier coefficients decay.

Corollary. If f (eie) is an n-times continuously differentiable function
of 0, with Fourier series f (€9) ~ Y cpe™*®, then Y 70 k*™|ck|? < o0.
Further, k"¢, — 0 as k — 0.

To see this, observe that the nth derivative of f (eie) has Fourier series
S (ik)"cret*® and apply Bessel’s inequality. The second statement of the
corollary follows immediately from the convergence of the series, since the
terms of the series then tend to 0.
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In particular, if f (eie) is a twice continuously differentiable function of 8,
then k%cy — 0 as k — too. Hence the series Y |ck| converges, by com-
parison with > 1/k?. By the Weierstrass M-test, the series 3" cxe**? then
converges uniformly in #. By the pointwise convergence theorem proved
above, the sum of the series is f (e“’). We have proved the following.

Theorem. Suppose f (ew) is a twice continuously differentiable function
of §. Then the Fourier series of f (¢'%) converges to f (€*) uniformly in 6.

Example. Define g() = 6* — 2726%, —7 < 6 < w. We check that
g(—7) = g(n), ¢'(—m) = ¢'(7), and ¢"(—7) = ¢" (7). Consequently, if we
set f (e) = g(6), we obtain a twice continuously differentiable function
of €. By the theorem, the Fourier series of f (ew) converges uniformly
in 8. The explicit calculation of the Fourier series is left to the exercises
(Exercise 4).

Example. The Fourier series in (6.5) does not converge uniformly, since
the sum is not continuous.

Exercises for V1.6

1. Consider the continuous function f(e*®) = 4|, —7 < 6 < 7. Find
the complex Fourier series of f (e") and show that it can be ex-
pressed as a cosine series. Sketch the graphs of the first three par-
tial sums of the cosine series. Discuss the convergence of the series.
Does it converge uniformly? Partial answer. The cosine series is

T 4 1 1
6] = 5o (cosH+ Eﬁcos39+§cos50+---).

2. Let f(e®) =6, —m < 6 < 7 (the principal value of the argument).
Find the complex Fourier series of f (eie) and the sine series of
f (ew). Show that the complex Fourier series diverges at 8 = =,
while the sine series converges at +m. Differentiate the complex
Fourier series term by term and determine where the differentiated
series converges.

3. Consider the continuous function f(e*®) = #2, —m < 6 < n. Find the
complex Fourier series of f (e’e) and show that it can be expressed
as a cosine series. Discuss the convergence of the series. Does it
converge uniformly? By substituting § = 0, show that

L S S S T
12 22 32 g2 '

4. Consider the continuous function f(e*) = % — 27202, -7 < 6 < .

Find the complex Fourier series of f (¢*®) and show that it can be



192

10.

VI Laurent Series and Isolated Singularities

expressed as a cosine series. Relate the Fourier series to the series
of the function in Exercise 3.

Show that if S ¢, converges absolutely, then 3 c e*® converges
absolutely for each 6, and the series converges uniformly for —7n <
0 <.

Show that any function f () on the unit circle with absolutely

convergent Fourier series has the form f (e*®) = g (e®) + h (),
where g(z) and h(z) are continuous functions on the unit circle that
extend continuously to be analytic on the open unit disk.

If £ (e®) ~ > cke™®, and the series converges uniformly to f ('),
then

Remark. This is called Parseval’s identity. Formula (6.6) shows
that Parseval’s identity holds for a function f (eig) if and only if
the partial sums of the Fourier series of f (e*) converge to f (e*)
in the sense of “mean-square” or “L2-approximation.”

By applying Parseval’s identity to the piecewise constant function
with series (6.5), show that

G S S
8 32 52 72 '
Use this identity and some algebraic manipulation to show that
SN S NS
6 22 32 42

By applying Parseval’s identity to the function of Exercise 1, show
that

L T S T
96 33 5t T4
Use this identity and some algebraic manipulation to show that
G SO S
90 24 7 34 44 '

If f(2) is analytic in some annulus containing the unit circle |z| =1,
with Laurent expansion Y. ax2*, then

(oo}

f(2)Pldzl = > laxl®

k=—o00

1

27 |z]=1
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11.

12.

13.

14.

15.

16.

Let f (ew) be a continuous function on the unit circle, with Fourier
series Y cxe™®. Show that f (¢%®) extends to be analytic on some
annulus containing the unit circle if and only if there exist r < 1
and C > 0 such that |cx| < Crl*l for —00 < k < .

Using the convergence theorem for Fourier series, prove that every
continuous function on the unit circle in the complex plane can be
approximated uniformly there by trigonometric polynomials, that
is, by finite linear combinations of exponentials e**¢, —o0o < k < 0.
Strategy. First approximate f (619) by a smooth function.

Let D be a domain bounded by a smooth boundary curve of length
2n. We parametrize the boundary of D by arc length s, so the
boundary is given by a smooth periodic function v(s), 0 < s < 2.
Let 3" cre®*s be the Fourier series of y(s). (a) Show that Y k?|cx|? =
1. Hint. Apply Parseval’s identity to v'(s) and use |¥'(s)| =1 for a
curve parameterized by arc length. (b) Show that the area of D is
7S k|ck|?. Hint. Use Exercise IV.1.4. (c) Show that the area of D
is < 7, with equality if and only if D is a disk. Remark. This proves
the isoperimetric theorem: Among all smooth closed curves of a
given length, the curve that surrounds the largest area is a circle.

Show that
2
4 . - ol de
AN ik@| Y
/_W P - 3w o
iy n 2 d0 n
_ 20 1k6 2
= /;Tr f(e )—k:Z_kaek 57_T+k:_m|bk_6k|

for any choice of complex numbers by, —m < k < n. Remark. This
shows that the best mean-square approximant to f (eie) by expo-
nential sums " bre*?. for fixed m and n, is the corresponding
partial sum of the Fourier series.

Show that a continuously differentiable function on the unit circle
has an absolutely convergent Fourier series. Strategy. Write the
Fourier coefficients ¢ of f (¢*®) as axb, where a; = 1/ik and by is
the Fourier coefficient of the derivative. Use Bessel’s inequality and
the Cauchy-Schwarz inequality |> axBc| < v/ ERVAIEAR

Let f (') be a continuous function on the unit circle. Suppose
that f (e”) is piecewise continuously differentiable, in the sense
that it has a continuous derivative except at a finite number of
points, at each of which the derivative has limits from the left and
from the right. Show that the Fourier series of f (e'®) is absolutely
convergent. Strategy. Cancel the discontinuities of the derivative
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using translates of the function in Exercise 3, whose Fourier series
is absolutely convergent.

Let f (&) be piecewise continuously differentiable, in the sense that
it is continuously differentiable except at a finite number of points,
at each of which both the function and its derivative have limits from
the left and from the right. Show that the Fourier series of f (ei?
converges at each point, to f (e*) if the function is continuous at €%,
and otherwise to the average of the limits of f (eio) from the left and
from the right. Strategy. Show that f (e?) = f (e®)+3" bjh; (%),
where f; (eie) satisfies the hypotheses of Exercise 15, and each
h; (ew) is obtained from the function of Exercise 2 by a change
of variable 8 — 6 — 6;.



VII
The Residue Calculus

Section 1 is devoted to the residue theorem and to techniques for evaluating
residues. In the remaining sections we apply the residue theorem to eval-
uate various real integrals. This material provides a good training ground
for the techniques of complex integration. The student who is anxious to
move on can skip the final several sections of the chapter at first reading.

1. The Residue Theorem

Suppose zp is an isolated singularity of f(z) and that f(z) has Laurent
series

flz) = Z an(z — 29)", 0<|z— 20| <p.

n=—oo

We define the residue of f(z) at zg to be the coefficient a_; of 1/(z — 20)
in this Laurent expansion,

(1.1) Res[f(z), 2] = a3 = —— f(2)dz,

2 |z—z0|=r

where r is any fixed radius satisfying 0 < r < p.

Example. The definition yields immediately

1 1
Res | — =1 Res | ———— = 0.
S[Z’O:I ) es[(z_zo)z,zol

Example. The partial fractions decomposition

1 ! ! ! 11 + [analytic at 4]
= — _ g a.
22 +1 2t |z —1 zZ+1 2t z —1
yields
Res ;,z = i
2241 21
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The following residue theorem provides an important tool for evaluating
complex line integrals. It extends Cauchy’s theorem by allowing for a finite
number of singularities inside the contour of integration. When there are
no singularities present, the residue theorem reduces to Cauchy’s theorem.

Theorem (Residue Theorem). Let D be a bounded domain in the com-
plex plane with piecewise smooth boundary. Suppose that f(z) is analytic

on D U 0D, except for a finite number of isolated singularities z1,... ,zm
in D. Then
(1.2) f(z)dz = QWiZRes[f(z),zj].

8D =

To see this, let D, be the domain obtained from D by punching out small
disks U; centered at z; of radius €. The formula (1.1) for the residue at z;
yields

/ f(z)dz = 2miRes| f(z),z;].
aU;

(This can be regarded as a special case of the residue theorem, for the
domain U; and a function with a singularity at z;.) By Cauchy’s theorem,

0 = f(z)dz = flz)dz — > f(z)dz.
i=179U;

oD, oD

If we combine these two identities, we obtain (1.2).
We give four useful rules for calculating residues.

Rule 1. If f(2) has a simple pole at zy, then
Res|f(2), 0] = lim (2 - 20)f(2)

In this case the Laurent series of f(z) is
flz) =

from which the rule follows immediately. Note that once we obtain an
~~expression for (z — z9)f(2) as an analytic function, the limit is evaluated
by simply plugging z = 2o into the expression.

a—

+ [analytic at zq],
zZ— 2y
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Example. From Rule 1 we have

1 i i z—1 . 1 1 1
Res ,11 = lim —— = lim - = _ = —.
22 +1 z—i 22 +1 z—>i z 41 z2+1,_; 2i

This method of obtaining the residue is faster than finding first the partial
fractions decomposition. Rule 4 below is faster yet.

Rule 2. If f(z) has a double pole at zq, then

Res[f(2),20] = lim “2[(z— 20)°f(2)].

zZ2—2g dz

In this case the Laurent expansion is

a_ a_
fz) = S+ —— + ag + -
(z — zo) Z— 20

Thus
(z—20)%f(2) = a_2 + a_1(z—20) + ao(z—20)% + ---.

If we differentiate and then plug in z = 23, we obtain Rule 2. Note that
Rule 2 can be regarded as the formula for the coefficient of z — 2y in the
power series expansion of the analytic function (z — 29)?f(2).

Example. The function 1/(22 + 1)? has double poles at +i. The residue
at ¢ is given by

Res | —— i lim £ ! 2 1
s = - = T
(22 -+ 1)2 ’ z—1 dZ (Z + 7/)2 (Z + 2)3 z=1 41

1

Rule 3. If f(z) and g(z) are analytic at z, and if g(z) has a simple zero

at zo, then
Res [%,Zo} _ f(=)

In this case f(z)/g(z) has at most a simple pole at z. If we use Rule 1
and the definition of the derivative, we obtain for the residue

lim (z—20)22) = lim f(z) _ flz=)
2o 9(z) 2=z (9(2) — g(20))/(2 —20)  g'(20)

Example. The partial fractions decomposition of the function 23 / (z2 +1)
was found in Section V1.4 to be
23 N 1 1 1 1
2241 2z—14 2z41
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From this we read off the residues at +7 to be both —%. The residues can
also be obtained directly using Rule 3. The residue at ¢ is given by

3 3 -3 1
Res {———Z :I = 2 :

z2+1’Z 2 2% 27

z=1

The following special case of Rule 3 is particularly useful.

Rule 4. If g(z) is analytic and has a simple zero at zo, then

] !
Hes {_9—(7)’20} " g(z0)

Example. If we apply Rule 4 to 1/(z2 + 1), we obtain the residue even
faster than before,

Exercises for VII.1

1. Evaluate the following residues.

- . i
(a) Res o 22'] (d) Res {81:22 , 0} (g) Res £ 1]

[ 1 _ cos 2z [ e*
(b) Res |, —21] (€) Res [ — o] (h) Res | 5, 0}
1 , 2" +1 5
(c) Res Fo1 1} (f) Res [cot z, O] (i) Res 0 ©

2. Calculate the residue at each isolated singularity in the complex
plane of the following functions.

z 1

@ O Oemgp o

3. Evaluate the following integrals, using the residue theorem.

sin z z 1
(a) j{ dz (c) j{ dz (e) dz
zl=1 22 |2|]=2 COS 2 lz—11=1 2% — 1

z 4 t
O f e @f oa omf 2 4
|z|l=2 2° — 1 |z|=1 SN 2 |z—1/2|=3/2 #

. Suppose P(z) and Q(z) are polynomials such that the zeros of Q(z)
are simple zeros at the points 21,... ,zn,, and deg P(z) < degQ(z).
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Show that the partial fractions decomposition of P(z)/Q(z) is given
by

5. Let f(z) be a meromorphic function on the complex plane that is
doubly periodic, and suppose that none of the poles of f(z) lie on the
boundary of the period parallelogram P constructed in Section VI.5.
By integrating f(z) around the boundary of P, show that the sum
of the residues at the poles of f(z) in P is zero. Conclude that there
is no doubly periodic meromorphic function with only one pole, a
simple pole, in the period parallelogram.

mi(2—1/2)2
e
/ 1 ooz 4%
8Dr 1—e
where Dp, is the parallelogram with vertices £(3) + (1 +)R. (a)
Use the residue theorem to show that the integral is (1 + i)/v/2.

(b) By parameterizing the sides of the parallelogram, show that the
integral tends to

6. Consider the integral

o0 2
(1 +i)/ e 2™ dt

— o0

as R — oo. (c) Use (a) and (b) to show that

oo 2
/ e %ds = /.
—oQ

2. Integrals Featuring Rational Functions

The prototype for evaluation of an integral by means of contour integration
is the derivation of the formula

fes)
d
(2.1) / 12 = T
— 00 1+I

This integral can, of course, be evaluated using the usual integration for-
mula featuring the inverse tangent function. To evaluate it using contour
integration, we proceed as follows.

Let Dg be the half-disk in the upper half-plane bounded by the interval
[—R, R] on the real axis and the semicircular contour I'g of radius R in the
upper half-plane. The function 1/(1 + 22) has one pole in Dg, a simple
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-R " 0 R

senicircular contour

pole at ¢ with residue 1/2i. The residue theorem yields

d 1 1
/ Z2 :27riRes[————2,i} = 2 - — = .
opp 1 +2 1+2 2t

/ dz _/R dz +/ dz
apg 1 + 22 _rl+a? rp 1+22

On I'g we have

Now,

1/(1+2%) < 1/(R*-1) ~ 1/R?,
while the length of 'y is mR. By the M L-estimate we have

dz 1 1
/FR1+z2 SRR
which tends to 0 as R — oo. Hence
lim f _dr = m,

R—oo J_p 1422

which is (2.1).
The same technique can be used to evaluate integrals of the form

[55e

where P(z) and Q(z) are polynomials, and Q(z) has no zeros on the real
axis. For convergence of the integral, we require that

(2.3) degQ(z) > degP(z) + 2.

The integral is evaluated by integrating P(z)/Q(z) around the boundary
of a half-disk in the upper half-plane, as above, and letting the radius tend
to oco. This yields the formula

(2.4) /_O; gg; dz = QWiZResl:g—Z%,zj},

summed over the poles z; of P(2)/Q(z) in the upper half-plane.




2. Integrals Featuring Rational Functions 201

The same contour can be used to evaluate the integrals of rational func-
tions times trigonometric functions. The typical integral has the form

> P(x)
—oo Q()

where the polynomials P(z) and Q(z) have real coefficients and satisfy
(2.3). To use the semicircular contour, we cannot use the function cos(az),
because it behaves too badly in the upper half-plane. (As we have seen,
the cosine function is essentially a hyperbolic cosine on the imaginary axis,
which grows exponentially fast.) To obtain a tractable integral, we resort
to a trick. The trick is to substitute e** for the cosine function in the
contour integral, and to recover the cosine integral at the end by taking
real parts. Since |e(*+%)| = e~¥ the exponential function e*? is bounded
by 1 in the upper half-plane,

cos(az) dx

le*] < 1, Im(z) > 0.
Example. We show by contour integration that

e ]
(2.5) / EE§_(‘_1_$§2 dr = me™°, a>0.
oo 1+

Again we let Dg be the half-disk in the upper half-plane bounded by the
interval [— R, R] on the real axis and the semicircular contour I'g of radius R
in the upper half-plane. This time we integrate the function €*2% /(1 + z2)
over the boundary of Dg. The function has only one pole in the upper
half-plane, a simple pole at ¢, with residue calculated by Rule 3 to be

6iaz ) eiaz
——— Z -
1+ 227 2z

—a

e
2i

Res [

z=1

Thus

eiaz . e—a 3
2dz:27m- — = qe °.
8Dgr 1 + z 27,

Since |e***| < 1 in the upper half-plane, the M L-estimate yields

eiaz
/ 5 dz
Tr 1 + z
Again we have

etaz R elaz elaz
/ £ 4 =/ 2dr+/ _dz.
oD 1 T2 _rl+z rp 1 +2

Passing to the limit as R — oo, we obtain

oo eiaa:
/ 1T 2 dr = me @, a>0.
—o0

1 1
< AR ~ —.
T R

- R?2-1
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Now we take the real parts of the integral, and we obtain (2.5). Note that
if we take the imaginary part of the integral, we obtain

/ sin(ax) ir = 0,

oo 1+ 22

which is no surprise, since the integrand is an odd function.

Exercises for VII.2

1. Show using residue theory that

*®  dx T
T35 — 7> a > 0.
—co Lt a a

Remark. Check the result by evaluating the integral directly, using
the arctangent function.

2. Show using residue theory that

/°° dzx o
oo (T2 4+a2)2 T 203

Remark. Check the result by differentiating the formula in the pre-
ceding exercise with respect to the parameter.

3. Show using residue theory that

/°° ?der o«
oo (2 1)2 27

Remark. Check the result by combining the preceding two exercises.

*  dz
4. Using residue theory, show that / ]

o I +1 V2

2

* z T

5. Usi idue theory, show that dr = —.

sing residue theory, show tha /o e Wi

> x T

6. Show that dr = ——.

ow e /_00(12+23:+2)(12+4) * 10
7. Show that

* cos(ax) T _ \/—( a . a )
dr = —e ¥V2(cos — +sin— | , a > 0.

/_oo 4 +1 V2 V2 V2

8. Show that

> cCos T 1 1
~— 98T gr — 9me=V/V2 | /2 sin — — |
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